Skip to main content
Log in

A Long-Lived Center of Gas–Fluid Emanations on the Western Slope of the Kuril Basin (Sea of Okhotsk)

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The paper presents the results of multidisciplinary studies in the carbonate–barite mineralization area revealed on the western slope of the Kuril deep-water basin in the Sea of Okhotsk. Findings of carbonate concretions and barite in different age (Miocene–Holocene) deposits indicate that the bottom of this area hosted a long-lived center of gas–fluid emanations over several million years. The age of the host deposits was determined based on the diatom analysis: the oldest age corresponds to the Late Miocene (7.67‒6.57 Ma). The carbonate–barite mineralization originated due to the migration of hydrocarbon (mainly methane) and Ba-containing gas–fluid flows derived from both near-surface reservoirs and deep sources. The flows were most likely associated with mud volcanism. Hydrocarbon gases in pore fluids of the sediment are enriched in heavy methane homologues, while carbonate concretions are characterized by a heavier oxygen isotope composition. The Sr isotope composition (87Sr/86Sr) is significantly lower (0.708581) compared to the water of modern sea basins, which may also indicate the deep nature of fluids. Modern activity is expressed in the episodic manifestation of gas flows as strong hydroacoustic anomalies in the water core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Aharon, P., Is drilling in deep water Gulf of Mexico uncorking bad genies? Trans. GCAGS/GCSSEPM, 53rd Ann. Conv., Baton Rouge, 2003,vol. 53, pp. 1–10.

    Google Scholar 

  2. Aharon, P. and Fu, B., Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deep water Gulf of Mexico, Geochim. Cosmochim. Acta, 2000, vol. 64, no. 2, pp. 233–246.

    Article  Google Scholar 

  3. Aharon, P., Schwarcz, H.P., and Roberts, H.H., Radiometric dating of submarine hydrocarbon seeps in the Gulf of Mexico, Geol. Soc. Am. Bull., 1997, vol. 109, pp. 568–579.

    Article  Google Scholar 

  4. Akiba, F., Hiramatsu, Ch., Tsoy, I.B., et al., Diatom biostratigraphy and geologic age of the Maruyama and Kurasi formations, southern Sakhalin, and their correlation to the Neogene of the Tenpoku area, Hokkaido, J. Geogr., 2000, vol. 109, no. 2(969), pp. 203–217.

  5. Aloisi, G., Pierre, C., and Rouchy, J.-M., and the MEDINAUT Scientific Party, Methane related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization, Earth Planet. Sci. Lett., 2000, vol. 184, pp. 321–338.

    Article  Google Scholar 

  6. Aloisi, G., Wallmann, K., Bollwerk, S.M., et al., The effect of dissolved barium on biogeochemical processes at cold seeps, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 8, pp. 1735–1748.

    Article  Google Scholar 

  7. Aquilina, L., Dia, A.N., Boulegue, J., et al., Massive barite deposits in the convergent margin off Peru: implications for fluid circulation within subduction zones, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 6, pp. 1233–1245.

    Article  Google Scholar 

  8. Bayon, G., Henderson, G.M., Pierre, C. Y., et al., Temporal activity of fluid seepage on the Nile deep-sea fan inferred from U-Th dating of authigenic carbonates, CIESM Workshop Monogr., 2005, vol. 29, pp. 111–114.

  9. Bayon, G., Henderson, G.M., and Bohn, M., U–Th stratigraphy of a cold seep carbonate crust, Chem. Geol., 2009, vol. 260, no. 1/2, pp. 47–56.

    Article  Google Scholar 

  10. Bayon, G., Dupre, S., Ponzevera, E., et al., Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion, Nature Geosci., 2013, vol. 6, pp. 755–760.

    Article  Google Scholar 

  11. Blinova, V.N., Ivanov, M.K., and Bohrmann, G., Hydrocarbon gases in deposits from mud volcanoes in the Sorokin Trough, North-Eastern Black Sea, Geo-Mar. Lett., 2003, vol. 23, nos 3-4, pp. 250–257.

    Article  Google Scholar 

  12. Blinova, V., Comas, M., Ivanov, M., et al., Active mud volcanism in the West Alboran Basin: geochemical evidence of hydrocarbon seepage, Mar. Petr. Geol., 2011, vol. 28, pp. 1483–1504.

    Article  Google Scholar 

  13. Blokhin, M.G., Ivin, V.V., Mikhailik, P.E., et al., Genesis of barites in the Deryugin Basin (Sea of Okhotsk), Vestn. KRAUNTs, Nauki Zemle, 2018, no. 1, pp. 51–59.

  14. Boetius, A. and Suess, E., Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates, Chem. Geol., 2004, vol. 205, pp. 291–310.

    Article  Google Scholar 

  15. Boetius, A., Ravenschlag, K., Schubert, C.J., et al., A marine consortium apparently mediating anaerobic oxidation of methane, Nature, 2000, vol. 407, pp. 623–626.

    Article  Google Scholar 

  16. Bohrmann, G., Greinert, J., Suess, E., and Torres, M., Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability, Geology, 1998, vol. 26, no. 7, pp. 647–650.

    Article  Google Scholar 

  17. Brand, U., Logan, A., Hiller, N., and Richardson, J., Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography, Chem. Geol., 2003, vol. 198, nos. 3/4, pp. 305–334.

    Article  Google Scholar 

  18. Campbell, K.A. and Francis, D.A., Miocene methane-seep carbonates of the East Coast asin, North Island, New Zealand, Geol. Soc. N. Z. Misc. Publ., 1998, vol. 101A, p. 61.

    Google Scholar 

  19. Campbell, K.A., Farmer, J.D., and Marais, D.D., Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry, fluids and palaeoenvironments, Geofluids, 2002, vol. 2, pp. 63–94.

    Article  Google Scholar 

  20. Campbell, K.A., Francis, D.A., Collins, M., et al., Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand, Sediment. Geol., 2008, vol. 204, pp. 83–105.

    Article  Google Scholar 

  21. Canet, C., Prol-Ledesma, R.M., Escobar-Briones, E., et al., Mineralogical and geochemical characterization of hydrocarbon seep sediments from the Gulf of Mexico, Mar. Petr. Geol., 2006, vol. 23, pp. 605–619.

    Article  Google Scholar 

  22. Canet, C., Anadón, P., Alfonso, P., et al., Gas-seep related carbonate and barite authigenic mineralization in the northern Gulf of California, Mar. Petr. Geol., 2013, vol. 43, pp. 147–165.

    Article  Google Scholar 

  23. Castellini, D.G., Dickens, G.R., Snyder, G.T., and Ruppel, C.D., Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico, Chem. Geol., 2006, vol. 226, pp. 1–30.

    Article  Google Scholar 

  24. Chen, S.-Ch., Hsu, Sh.-K., Tsai, Ch.-H., et al., Gas seepage, pockmarks and mud volcanoes in the near shore of Sw Taiwan, Mar. Geophys. Res., 2010, vol. 31, pp. 133–147.

    Article  Google Scholar 

  25. Cremiere, A., Bayon, G., Ponzevera, E., and Pierre, C., Paleo-environmental controls on cold seep carbonate authigenesis in the Sea of Marmara, Earth Planet. Sci. Lett., 2013, vol. 376, pp. 200–211.

    Article  Google Scholar 

  26. Cremiere, A., Lepland, A., Sahy, D., et al., Methane-derived carbonates as archives of past seepage activity along the Norwegian margin, EGU General Assembly, Vienna, 2014, id.13517.

  27. Dahlmann, A. and De Lange, G.J., Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160, Earth Planet. Sci. Lett., 2003, vol. 212, nos. 3/4, pp. 377–391.

    Article  Google Scholar 

  28. Derkachev, A.N., Borman, G., Grainert, I., and Mozherovskii, A.V., Authigenic carbonate and barite mineralization, Lithol. Miner. Resour., 2000, no. 6, pp. 504–519.

  29. Derkachev, A.N. and Nikolaeva, N.A., Specific features of the authigenic mineral genesis in sediments of the Sea of Okhotsk, in Dal’nevostochnye morya Rossii (Far East Seas in Russia), Kulinich, R.G., Ed., Moscow: Nauka, 2007, part 1.

  30. Derkachev, A.N., Nikolaeva, N.A., Baranov, B.V., et al., Nature of carbonate-barite mineralization at methane seeps on the western slope of the Kuril Basin (Sea of Okhotsk), in Geologiya morei i okeanov (Geology of Seas and Oceans), Moscow: GEOS, 2015a, pp. 31–34.

  31. Derkachev, A.N., Nikolaeva, N.A., Baranov, B.V., et al., Manifestation of carbonate–barite mineralization around methane seeps in the Sea of Okhotsk (the western slope of the Kuril Basin), Oceanology, 2015b, vol. 55, no. 3, pp. 390–399.

    Article  Google Scholar 

  32. Dia, A.N., Aquilina, L., Boulegue, J., et al., Origin of fluids and related barite deposits at vent sites along the Peru convergent margin, Geology, 1993, vol. 21, pp. 1099–1102.

    Article  Google Scholar 

  33. Díaz-del-Rio V., Somoza L., Martinez-Frias J. et al. Vast fields of hydrocarbon-derived carbonate chimneys related to the accretionary wedge/olistostrome of the Gulf of Cadiz, Mar. Geol., 2003, vol. 195, pp. 177–200.

    Article  Google Scholar 

  34. Díaz-del-Río V., Fernández-Puga M.C., Maestro A., Mata M.P. Sea-floor features related to hydrocarbon seeps in deep water carbonate-mud mounds of the Gulf of Cádiz: from mud flows to carbonate precipitates, Geo-Mar. Lett., 2007, vol. 27, pp. 237–247.

    Article  Google Scholar 

  35. Dipre, G.R., Polyak, L., Kuznetsov, A.B., et al., Plio-Pleistocene sedimentary record from the Northwind Ridge: new insights into paleoclimatic evolution of the western Arctic Ocean for the last 5 Ma, Arctos, 2018, vol. 4, pp. 4–24.

    Google Scholar 

  36. Emel’yanova, T.A. and Lelikov, E.P., Volcanism as an indicator of a depth mechanism for the formation of the seas of Japan and Okhotsk, Russ. J. Pacif. Geol., 2013, vol. 32, no. 2, pp. 124–132.

    Article  Google Scholar 

  37. Feng, D. and Chen, D., Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity, Deep-Sea Res. II, 2015, vol. 122, pp. 74–83.

    Article  Google Scholar 

  38. Feng, D. and Roberts, H.H., Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope, Earth Planet. Sci. Lett., 2011, vol. 309, pp. 89–99.

    Google Scholar 

  39. Feng, J., Yang, Sh., Wang, H., et al., Methane source and turnover in the shallow sediments to the west of Haima cold seeps on the northwestern slope of the South China Sea, Hindawi Geofluids, 2019, article ID 1010824, pp. 1–18.

  40. Fu, B. and Aharon, P., Origin and depositional model of barite deposits associated with hydrocarbon seeps on the Gulf of Mexico slope, offshore Louisiana, Trans. Gulf Coast Assoc. Geol. Soc., 1997, vol. 47, pp. 14–20.

    Google Scholar 

  41. Fu, B., Aharon, P., Byerly, G.R., and Roberts, H.H., Barite chimneys on the Gulf of Mexico slope: initial report on their petrography and geochemistry, Geo-Mar. Lett., 1994, vol. 14, pp. 81–87.

    Article  Google Scholar 

  42. Ge, L., Jiang, S.Y., Yang, T., et al., Geochemical characteristics of cold seep carbonates as records of gas venting in Shenhu area, northern South China Sea, Geochim. Cosmochim. Acta, 2009, vol. 73, no. 13, p. A422.

    Google Scholar 

  43. Ginsburg, G.D., Milkov, A.V., Soloviev, V.A., et al., Gas hydrate cluster at the Haakon Mosby Mud Volcano, Geo-Mar. Lett., 1999, vol. 19, pp. 57–67.

    Article  Google Scholar 

  44. Gontharet, S., Pierre, C., Blanc-Valleron, M.-M., et al., The Nautinil Scientific Party. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea), Deep-Sea Res. II, 2007, vol. 54, no. 11, pp. 1292–1311.

    Article  Google Scholar 

  45. Greinert, J., Bohrmann, G., and Suess, E., Gas hydrate associated carbonates and methane venting at hydrate ridge: classification, distribution, and origin of authigenic lithologies, in Natural Gas Hydrates: Occurrence, Distribution and Detection, AGU Geophys. Monogr., 2001, vol. 124, pp. 99–113.

    Google Scholar 

  46. Greinert, J., Bollwerk, S.M., Derkachev, A., et al., Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites, Earth Planet. Sci. Lett., 2002, vol. 203, pp. 165–180.

    Article  Google Scholar 

  47. Gusev, E.A., Kuznetsov, A.B., Taldenkova, E.E., et al., Past sedimentation rates and environments of the Mendeleev Rise inferred from Sr isotope and δ18O chemostratigraphy of its Late Cenozoic sediments, Dokl. Earth Sci., 2017, vol. 473, no. 1, pp. 354–358.

    Article  Google Scholar 

  48. Gwiazda, R.H., Paull, Ch.K., Caress, D.W., et al., The extent of fault-associated modern authigenic barite deposits offshore northern Baja California revealed by high-resolution mapping, Front. Mar. Sci., 2019, vol. 6, article 460. P. 1–13.

  49. Haas, A., Peckmann, J., Elvert, M., et al., Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan, Mar. Geol., 2010, vol. 268, pp. 129–136.

    Article  Google Scholar 

  50. Hachikubo, A., Krylov, A., Sakagami, H., et al., Isotopic composition of gas hydrates in subsurface sediments from offshore Sakhalin Island, Sea of Okhotsk, Geo-Mar Lett., 2010, vol. 30, pp. 313–319.

    Article  Google Scholar 

  51. Han, X., Suess, E., Sahling, H., and Wallmann, K., Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates, Int. J. Earth Sci, 2004, vol. 93, pp. 596–611.

    Google Scholar 

  52. Han, X., Suess, E., Huang, Y., et al., Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea, Mar. Geol., 2008, vol. 249, pp. 243–256.

    Article  Google Scholar 

  53. Han, X., Yang, K., and Huang, Y., Origin and nature of cold seep in northeastern Dongsha area, South China Sea: evidence from chimney-like seep carbonates, Chinese Sci. Bull., 2013, vol. 58, pp. 3689–3697.

    Article  Google Scholar 

  54. Hein, J.R., Normark, W.R., McIntyre, B.R., et al., Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California, Geology, 2006, vol. 34, pp. 109–112.

    Article  Google Scholar 

  55. Hein, J.R., Zierenberg, R.A., Maynard, J.B., and Hannington, M.D., Barite-forming environments along a rifted continental margin, Southern California Borderland, Deep-Sea Res. II, 2007, vol. 54, pp. 1327–1349.

    Article  Google Scholar 

  56. Hodell, D.A. and Woodruff, F., Variations in the strontium isotopic ratio of seawater during the Miocene: Stratigraphic and geochemical implications, Paleoceanogr. Paleoclimatol, 1994, vol. 9, no. 3, pp. 405–426.

    Google Scholar 

  57. Hydro-Carbon Hydrate Accumulations in the Okhotsk Sea (CHAOS Project Leg I and Leg II). Report of R/V Akademik M.A. Lavrentyev Cruise 31 and 32, Matveeva, T., Soloviev, V., Shoji, H., and Obzhirov, A., Eds., St. Petersburg: VNIIOkeangeologiya, 2005.

  58. Judd, A. and Hovland, M., Seabed Flow: The Impact of Geology, Biology and the Marine Environment, Cambridge: Cambr. Univ. Press, 2007.

    Book  Google Scholar 

  59. Kakizaki, Y., Snyder, G.T., Tanahashi, M., et al., Concentration and carbon-isotopic change of dissolved gas from Murono mud volcano in Tokamachi City, Niigata Prefecture (Central Japan), just before and after the 2014 Kamishiro Fault Earthquake, J. Geol. Soc. Japan, 2018, vol. 124, no. 2, pp. 127–140.

    Article  Google Scholar 

  60. Kalmychkov, G.V., Pokrovskii, B.G., Khachikubo, A., and Khlystov, O.M., Geochemical characteristics of methane from sediments of the underwater high Posolskaya Bank (Lake Baikal), Lithol. Miner. Resour., 2017, no. 2, pp. 102–1110.

  61. Kalmychkov, G.V., Hachikubo, A., Pokrovskii, B.G., Minami, H., Yamashita, S., and Khlystov, O.M., Methane with abnormally high δ13C and δD values from the coastal hot springs in Lake Baikal, Lithol. Miner. Resour., 2020, no. 6, pp. 439–444.

  62. Kasatkin, S.A. and Obzhirov, A.I., luid-Controlling Significance of the Nosappu Fracture Zone and Conditions for the Formation of Methane Fluxes and Gas Hydrates (Sea of Okhotsk Region), Russ. J. Pacif. Geol., 2018, vol. 37, no. 1, pp. 57–62.

    Article  Google Scholar 

  63. Kasten, S., Nothen, K., Hensen, Ch., et al., Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan, Geo-Mar. Lett., 2012, vol. 32, pp. 515–524.

    Article  Google Scholar 

  64. Kim, S-T., O’Neil, J.R., Hillaire-Marcel, C., and Mucci, A., Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 4704–4715.

    Article  Google Scholar 

  65. Koepnick, R.B., Burke, W.H., Denison, R.E., et al., Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: Supporting data, Chem. Geol., 1985, vol. 58, nos 1/2, pp. 55–81.

    Article  Google Scholar 

  66. Kravchishina, M.D., Lein, A.Yu., Savvichev, A.S., et al., Authigenic Mg-calcite at a cold methane seep site in the Laptev Sea, Oceanology, 2017, vol. 57, no. 1, pp. 174–191.

    Article  Google Scholar 

  67. Kutterolf, S., Liebetrau, V., Morz, T., et al., Lifetime and cyclicity of fluid venting at forearc mound structures determined by tephrostratigraphy and radiometric dating of authigenic carbonates, Geology, 2008, vol. 36, no. 9, pp. 707–710.

    Article  Google Scholar 

  68. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotope composition of the World Ocean, marginal and inland seas: Implications for the Sr isotope stratigraphy, Stratigr. Geol. Correl., 2012, vol. 20, no. 6, pp. 501–515.

    Article  Google Scholar 

  69. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., Strontium isotope stratigraphy: Principles and state of the art, Stratigr. Geol. Correl., 2018, vol. 26, no. 4, pp. 367–386.

    Article  Google Scholar 

  70. Lein, A.Yu. and Ivanov, M.V., Biogeokhimicheskii tsikl metana v okeane (Biogeochemical Methane Cycle in the Ocean), Moscow: Nauka, 2009.

  71. León, R., Somoza, L., Medialdea, T., et al., Classification of sea-floor features associated with methane seeps along the Gulf of Cádiz continental margin, Deep-Sea Res. II, 2006, vol. 53, pp. 1464–1481.

    Article  Google Scholar 

  72. Liang, Q., Hu, Y., Feng, D., et al., Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics, Deep-Sea Res. I, 2017, vol. 124, pp. 31–41.

    Article  Google Scholar 

  73. Liebetrau, V., Augustin, N., Kutterolf, S., et al., Cold-seep-driven carbonate deposits at the Central American forearc: contrasting evolution and timing in escarpment and mound settings, Int. J. Earth Sci., 2014, vol. 103, pp. 1845–1872.

    Article  Google Scholar 

  74. Luff, R., Wallmann, K., and Aloisi, G., Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities, Earth Planet. Sci. Lett., 2004, vol. 221, pp. 337–353.

    Article  Google Scholar 

  75. Mansour, A.S. and Sassen, R., Mineralogical and stable isotopic characterization of authigenic carbonate from a hydrocarbon seep site, Gulf of Mexico slope: Possible relation to crude oil degradation, Mar. Geol., 2011, vol. 281, pp. 59–69.

    Article  Google Scholar 

  76. Matveeva, T., Soloviev, V., Wallmann, K., et al., Geochemistry of gas hydrate cluster offshore NE Sakhalin Island (the Sea of Okhotsk): results from the KOMEX-2002 cruise, Geo-Mar. Lett., 2003, vol. 23, pp. 278–288.

    Article  Google Scholar 

  77. Mazurenko L.L., Soloviev V.A., Matveeva T.V. et al. Gas hydrate studies in the CHAOS Projects, in Gas Hydrates for the Future Energy and Environment, Proc. 2nd Int. Workshop Gas Hydrate Studies and Other Related Topics for the Future Energy and Environmental Considerations, Kitami: Inst. Technol., 2007, pp. 3–9.

  78. Mazurenko, L.L., Matveeva, T.V., Prasolov, E.M., et al., Gas hydrate forming fluids on the NE Sakhalin slope, Sea of Okhotsk in Sediment-Hosted Gas Hydrates: New Insight on Natural and Synthetic Systems, Long, D., Lovell, M.A., Rees, J.G., and Rochelle, C.A., Eds., Geol. Soc. London Spec. Publ., 2009, vol. 319, pp. 51–72.

    Google Scholar 

  79. Mazzini, A., Ivanov, M.K., Parnell, J., et al., Methane-related authigenic carbonates from the Black Sea: geochemical characterization and relation to seeping fluids, Mar. Geol., 2004, vol. 212, pp. 153–181.

    Article  Google Scholar 

  80. McArthur, J.M., Howarth, R.J., and Bailey, T.R., Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age, J. Geol., 2001, vol. 109, no. 2, pp. 143–153.

    Article  Google Scholar 

  81. McCready, R.D.L. and Krouse, H.R., Sulfur isotope fractionation by Desulfovibrio vulgaris during metabolism of BaSO4, Geomicrobiol. J., 1980, vol. 2, pp. 55–61.

    Article  Google Scholar 

  82. McQuay, E.L., Torres, M.E., Collier, R.W., et al., Contribution of cold seep barite to the barium geochemical budget of a marginal basin, Deep-Sea Research I, 2008, vol. 55, pp. 801–811.

    Article  Google Scholar 

  83. Milkov, A.V., Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological setting, Org. Geochem., 2005, vol. 36, pp. 681–702.

    Article  Google Scholar 

  84. Mizutani, Y. and Rafter, T.A., Isotopic behaviour of sulfate oxygen in the bacterial reduction of sulfate, Geochem. J., 1973, vol. 6, pp. 183–191.

    Article  Google Scholar 

  85. Morita, R., Titova, L.V., and Akiba, F., Oligocene-Early Miocene molluscs and diatoms from the Kitami-Tsubetsu area, eastern Hokkaido, Japan, Sci. Rep. Tohoku Univ., Sendai, Ser. Geol., 1996, vol. 63, no. 2, pp. 53–213.

  86. Naehr, T.H., Stakes, D.S., and Moore, W.S., Mass wasting, ephemeral fluid flow, and barite deposition on the California continental margin, Geology, 2000, vol. 28, pp. 315–318.

    Article  Google Scholar 

  87. Naehr, T.H., Eichhubl, P., Orphan, V.J., et al., Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study, Deep-Sea Research II, 2007, vol. 54, pp. 1268–1291.

    Article  Google Scholar 

  88. Niemann, H., Duarte, J., Hensen, C., et al., Microbial methane turnover at mud volcanoes of the Gulf of Cadiz, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 5336–5355.

    Article  Google Scholar 

  89. Novikova, S.A., Shnyukov, Y.F., Sokol, E.V., et al., A methane-derived carbonate build-up at a cold seep on the Crimean slope, north-western Black Sea, Mar. Geol., 2015, vol. 363, pp. 160–173.

    Article  Google Scholar 

  90. Obzhirov, A.I., Derkachev, A.N., Baranov, B.V., et al., Methane anomalies and conjugated barites in the Deryugin Basin, Sea of Okhotsk, Podvod. Tekhnol. Mir Okeana, 2006, no. 2, pp. 32–44.

  91. Obzhirov, A.I., Emel’yanova, T.A., Telegin, Yu.A., and Shakirov, R.B., Gas Flows in the Sea of Okhotsk Resulting from Cretaceous-Cenozoic Tectonomagmatic Activity, Russ. J. Pacif. Geol., 2020, vol. 39, no. 2, pp. 156–168.

    Article  Google Scholar 

  92. Operation Report of Sakhalin Slope Gas Hydrate Project II, 2013, R/V Akademik M.A. Lavrentyev, Cruise 62, Kitami: Kitami Inst. Technol., 2014.

  93. Operation Report of Sakhalin Slope Gas Hydrate Project II, 2014, R/V Akademik M.A. Lavrentyev, Cruise 67, Kitami: Kitami Inst. Technol., 2015.

  94. Orphan, V.J., House, C.H., Hinrichs, K.-U., et al., Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis, Science, 2001, vol. 293, pp. 484–487.

    Article  Google Scholar 

  95. Paytan, A., Mearon, S., Cobb, K., and Kastner, M., Origin of marine barite deposits: Sr and S isotope characterization, Geology, 2002, vol. 30, pp. 747–750.

    Article  Google Scholar 

  96. Peckmann, J., Reimer, A., Luth, U., et al., Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea, Mar. Geol., 2001, vol. 177, pp. 129–150.

    Article  Google Scholar 

  97. Pierre, C. and Fouquet, Y., Authigenic carbonates from methane seeps of the Congo deep-sea fan, Geo-Mar Lett, 2007, vol. 27, pp. 249–257.

    Article  Google Scholar 

  98. Reeder, R.J. and Sheppard, C.E., Variation of lattice parameters in some sedimentary dolomites, Am. Mineral., 1984, vol. 69, pp. 520–527.

    Google Scholar 

  99. Riedinger, N., Kasten, S., Groger, J., et al., Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin, Earth Planet. Sci. Lett., 2006, vol. 241, pp. 876–887.

    Article  Google Scholar 

  100. Roberts, H.H., Fluid and gas expulsion on the northern Gulf of Mexico continental slope: mud-prone to mineral-prone response, in Natural Gas Hydrates: Occurrence, Distribution, and Detection. AGU Geophys. Monogr., 2001, vol. 124, pp. 145–161.

    Google Scholar 

  101. Roberts, H.H., Feng, D., and Joye, S.B., Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico, Deep-Sea Res. II, 2010, vol. 57, pp. 2040–2054.

    Article  Google Scholar 

  102. Robertson, A.H.F. et al., Mud volcanism on the Mediterranean Ridge: Initial results of Ocean Drilling Program Leg 160, Geology, 1996, vol. 24, pp. 239–242.

    Article  Google Scholar 

  103. Rogov, M.A., Kuznetsov, A.B., Konstantinova, G.V., and Turchenko, T.L., The strontium isotopic composition in glendonites of the Middle Jurassic in northern Siberia, Dokl. Earth Sci., 2018, vol. 482, no. 1, pp. 1168–1172.

    Article  Google Scholar 

  104. Rovere, M., Gamberi, F., Mercorella, A., et al., Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea, Mar. Geol., 2014, vol. 347, pp. 153–171.

    Article  Google Scholar 

  105. Sauer, S., Past and present natural methane seepage on the northern Norwegian continental shelf, Doctoral, Thesis, Arctic Univ. Norway, Munin Open Res. Arch., 2016.

  106. Sheshukova-Poretskaya, V.S., Neogenovye morskie diatomovye vodorosli Sakhalina i Kamchatki (Neogene Marine Diatom Algae in Sakhalin and Kamchatka), Leningrad: LGU, 1967.

  107. Suess, E., Marine cold seeps and their manifestations: Geological control, biogeochemical criteria and environmental conditions, Int. J. Earth Sci., 2014, vol. 103, pp. 1889–1916.

    Article  Google Scholar 

  108. Suess, E. and Bohrmann, G., Von Huene R., et al., fluid venting in the eastern Aleutian subduction zone, J. Geophys. Res., 1998, vol. 103, no. 2, pp. 2597–2614.

    Article  Google Scholar 

  109. Tada, R. and Murray, R.W., lvarez Zarikian C.A., et al., Biostratigraphy, in Proc. Integr. Ocean Drill. Progr, College Station, 2015, vol. 346, pp. 10–14.

  110. Tarutani, T., Clayton, R.N., and Mayeda, T.K., The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water, Geochim. Cosmochim. Acta, 1969, vol. 33, pp. 987–996.

    Article  Google Scholar 

  111. Teichert, B.M.A., Eisenhauer, A., Bohrmann, G., et al., U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: Recorders of fluid flow variations, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 20, pp. 3845–3857.

    Article  Google Scholar 

  112. Torres, M.E., Brumsack, H.J., Bohrmann, G., and Emeis, K.C., Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts, Chem. Geol., 1996, vol. 127, pp. 125–139.

    Article  Google Scholar 

  113. Torres, M.E., McManus, J., and Huh, C.-A., Fluid seepage along the San Clemente fault scarp: basin-wide impact on barium cycling, Earth Planet. Sci. Lett., 2002, vol. 203, pp. 181–194.

    Article  Google Scholar 

  114. Torres, M.E., Bohrmann, G., Dubé, T.E., and Poole, F.G., Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins, Geology, 2003, vol. 31, pp. 897–900.

    Article  Google Scholar 

  115. Tsoy, I.B., Silikoflagellaty kainozoya Yaponskogo i Okhotskogo morei i Kurilo-Kamchatskogo zheloba (Cenozoic Silicoflagellates in the Seas of Japan and Okhotsk and the Kuril–Kamchatka Trough), Vladivostok: Dal’nauka, 2011.

  116. Tsoy, I.B. and Shastina, V.V., Kainozoiskii kremnistyi mikroplankton iz otlozhenii Okhotskogo morya i Kurilo-Kamchatskogo zheloba (The Cenozoic Siliceous Plankton from Sediments in the Sea of Okhotsk and Kuril–Kamchatka Trough), Vladivostok: Dal’nauka, 2005.

  117. Tsoy, I.B., Terekhov, E.P., Gorovaya, M.T., et al., Cenozoic sedimentation on the western slope of the South Okhotsk Basin, Sea of Okhotsk, Tikhookean. Geol., 2003, vol. 22, no. 4, pp. 19–34.

    Google Scholar 

  118. Tsoy, I.B., Vashchenkova, N.G., Vasilenko, L.N., Gorovaya, M.T., Vagina, N.K., and Mel’nichenko, Yu.I., Age and Formation Conditions of Cenozoic Sedimentary Cover of the Yamato Rise in the Sea of Japan, Stratigr. Geol. Correl, 2020, vol. 28, no. 2, pp. 202–230.

    Article  Google Scholar 

  119. Vanneste, H., James, R.H., Kelly-Gerreyn, B.A., and Mills, R.A., Authigenic barite records of methane seepage at the Carlos Ribeiro mud volcano (Gulf of Cadiz), Chem. Geol., 2013, vol. 354, pp. 42–54.

    Article  Google Scholar 

  120. Von Breymann, M.T., Brumsack, H.J., and Emeis, K.C., Deposition and diagenetic behavior of barium in the Japan Sea, in Proc. Ocean Drill. Progr, Sci. Res., College Station, 1992, pp. 651–665.

    Google Scholar 

  121. Vypova, I.Yu., Stratigraphy of Miocene deposits in the Aniv Bay (Sea of Okhotsk) based on the diatom data, in Novye dannye po stratigrafii Dal’nego Vostoka i Tikhogo okeana (New Data on Stratigraphy of the Far East and Pacific), Ablaev, A.G., Ed., Vladivostok: DVO RAN, 1990, pp. 112–117.

  122. Watanabe, Y., Nakai, S., Hiruta, A., et al., K. U-Th dating of carbonate nodules from methane seeps off Joetsu Margin of Japan Sea, Earth Planet. Sci. Lett., 2008, vol. 272, pp. 89–96.

    Article  Google Scholar 

  123. Whiticar, M.J., Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geol., 1999, vol. 161, pp. 291–314.

    Article  Google Scholar 

  124. Yanagisawa, Y. and Akiba, F., Refined Neogene diatom biostratigraphy for the northwest Pacific around Japan, with an introduction of code numbers for selected diatom biohorizons, J. Geol. Soc. Japan, 1998, vol. 104, no. 6, pp. 395–414.

    Article  Google Scholar 

  125. Zhang, X., Shikui, S., and Yu, Z., Strontium isotope compositions of hydrothermal barite from the Yonaguni IV: Insight into fluid/sediment interaction and barite crystallization condition, Ocean. Coast. Sea Res., 2020, vol. 19, no. 2, pp. 377–385.

    Google Scholar 

  126. Zhong, Z., Wang, M., Chen, H., and Li, C., Gametogenesis and reproductive traits of the cold-seep mussel Gigantidas platifrons in the South China Sea, J. Ocean. Limnol., 2020, vol. 38, no. 4, pp. 1304–1318.

    Article  Google Scholar 

  127. Zhuang, G-C., Xu, L., Liang, Q., and Wang, F., Biogeochemistry, microbial activity, and diversity in surface and subsurface deep-sea sediments of South China Sea, Limnol. Oceanogr., 2019, vol. 64, no. 5, pp. 2252–2270.

    Article  Google Scholar 

Download references

Funding

This work was supported financially by the Joint Russian–Japanese—Korean Sakhalin Slope Gas Hydrates (SSGH) Project; the target-oriented state programs of the Il’ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences, Vladivostok (project nos. AAAA-A17-117030110033-0 and AAA-A17-117030110035-4); and the Russian Science Foundation (project no. RNF-19-17-00226). The chemical analysis of carbonate samples was accomplished in part with the utilization of MAMC facilities (St. Petersburg State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Derkachev.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkachev, A.N., Nikolaeva, N.A., Tsoy, I.B. et al. A Long-Lived Center of Gas–Fluid Emanations on the Western Slope of the Kuril Basin (Sea of Okhotsk). Lithol Miner Resour 56, 309–332 (2021). https://doi.org/10.1134/S0024490221040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490221040027

Keywords:

Navigation