Skip to main content
Log in

Near-infrared emission carrier, Er3+-doped ZnAl-LDH, for delivery and release of ibuprofen in vitro

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A drug delivery system with near-infrared emissions response to drug delivery and release is essential as marking or targeting drug delivery system. For this reason, the Er3+-doped ZnAl-LDH with near-infrared emissions was used for the first time for controlled release of the ibuprofen (IBU) that is a non-steroidal antiinflammatory drug. The drug release was controlled in simulated intestinal medium (pH 7.4 phosphate buffer solutions at 37 °C). The release kinetics showed an initial burst release followed by a slow release of IBU. The most important thing is that the intercalation of IBU into the Er3+-doped ZnAl-LDH greatly reduced the near-infrared emissions of the Er3+-doped ZnAl-LDH, whereas the near-infrared emissions were recovered after the IBU was released from the Er3+-doped ZnAl-LDH delivery system. This change of near-infrared emissions would provide a useful technique for in situ monitoring of the delivery and release of IBU. The Er3+-doped ZnAl-LDH with near-infrared emissions is inexpensive, biocompatible, nontoxic, and little damage to biological tissue, which would be potential application as drug delivery system with marking or targeting performance.

ZnAl-Er-LDH drug delivery system exhibits great changes in the intensity of infrared emissions before drug delivery, during drug delivery, and after drug release. This change of infrared emissions would provide a useful technique for in situ monitoring of the delivery and release of ibuprofen at target sites.

Highlights

  • An infrared emission carrier for the delivery system of ibuprofen based on Er3+-doped ZnAl-LDH was reported for the first time.

  • The release kinetics of ibuprofen from the Er3+-doped ZnAl-LDH delivery system has been investigated.

  • The near infrared emissions of Er3+-doped LDH drug delivery system obviously response to the delivery and release of ibuprofen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vajedi F, Dehghani H, Zarrabi A (2021) Design and characterization of a novel pH-sensitive biocompatible and multifunctional nanocarrier for in vitro paclitaxel release. Mater Sci Eng C 119:111627

    Article  CAS  Google Scholar 

  2. Leão AD, Alvarez-Lorenzo C, Soares-Sobrinho JL (2020) One-pot synthesis of the organomodified layered double hydroxides-glibenclamide biocompatible nanoparticles. Collo Surf B: Biointerfaces 193:111055/1–9

    Google Scholar 

  3. Stepanova LN, Belskaya OB, Vasilevich V, Gulyaeva TI, Leonteva NN, Serkova N, Salanov N, Likholobov VА (2020) The study of structural, textural and basic properties of MgAl- and LiAl-LDH prepared by mechanochemical method. Catal Today 357:638–664

    Article  CAS  Google Scholar 

  4. Gu Y, Xu C, Wang YY, Zhou XY, Fang L, Cao F (2019) Multifunctional nanocomposites based on liposomes and layered double hydroxides conjugated with glycylsarcosine for efficient topical drug delivery to the posterior segment of the eye. Mole Pharm 16:2845–2857

    Article  CAS  Google Scholar 

  5. Liu JX, Zhang XG, Zhang YQ (2015) Preparation and release behavior of chlorpyrifos adsolubilized into layered zinc hydroxide nitrate intercalated with dodecylbenzenesulfonate. ACS Appl Mater Inter 7:11180–11188

    Article  CAS  Google Scholar 

  6. Bini M, Monteforte F, Quinzeni I, Friuli V, Maggi L, Bruni G (2019) Hybrid compounds for improving drugs solubility: synthesis, physico-chemical and pharmaceutical characterization of Nimesulide-LDH. J Solid State Chem 272:131–137

    Article  CAS  Google Scholar 

  7. Gunawan P, Xu R (2009) Direct assembly of anisotropic layered double hydroxide (LDH) nanocrystals on spherical template for fabrication of drug-LDH hollow nanospheres. Chem Mater 21:781–783

    Article  CAS  Google Scholar 

  8. Capsoni D, Quinzeni I, Bruni G, Friuli V, Maggi L, Bini M (2018) Improving the carprofen solubility: synthesis of the Zn2Al-LDH hybrid compound. J Pharm Sci 107:267–272

    Article  CAS  Google Scholar 

  9. Moghanizadeh-Ashkezari M, Shokrollahi P, Zandi M, Shokrolahi F, Daliri MJ, Kanavi MR, Balagholi S (2019) Vitamin C loaded poly(urethane-urea)/ZnAl-LDH aligned scaffolds increase proliferation of corneal keratocytes and up-regulate vimentin secretion. ACS Appl Mater Inter 11:35525–35539

    Article  CAS  Google Scholar 

  10. Zhang XG, Liu JX, Hou WG, Tong J, Ren LY, Sun GY (2016) Preparation and properties of pesticide/cyclodextrin complex intercalated into ZnAl-Layered double hydroxide. Ind Eng Chem Res 55:1550–1558

    Article  CAS  Google Scholar 

  11. Jung H, Kim H, Byeon SH (2018) Luminescent carrier, Tb3+-doped layered yttrium hydroxide, for delivery systems. ACS Appl Mater Inter 10:43112–43121

    Article  CAS  Google Scholar 

  12. Choy JH, Kwak SY, Park JS, Jeong YJ, Portier J (1999) Intercalative nanohybrids of nu cleoside monophosphates and DNA in layered metal hydroxide. J Am Ceram Soc 121:399–1400

    Google Scholar 

  13. Choy JH, Jung JS, Oh JM, Park M, Jeong J, Kang YK, Han OJ (2004) Layered double hydroxide as an effificient drug reservoir for folate derivatives. Biomaterials 25:3059–3064

    Article  CAS  Google Scholar 

  14. Rives V, Arco M, Martín C (2014) Intercalation of drugs in layered double hydroxides and their controlled release: a review. Appl Clay Sci 88/89:239–269

    Article  CAS  Google Scholar 

  15. Saha S, Ray S, Acharya R, Chatterjee TK, Chakraborty J (2017) Magnesium, zinc and calcium aluminiumlayered double hydroxide-drug nanohybrids: a comprehensive study. Appl Clay Sci 135:493–509

    Article  CAS  Google Scholar 

  16. Pandit S, Roy S, Pillai J, Banerjee S (2020) Formulation and intracellular trafficking of lipid– drug conjugate nanoparticles containing a hydrophilic antitubercular drug for improved intra-cellular delivery to human macrophages. ACS Omega 5:4433–4448

    Article  CAS  Google Scholar 

  17. Wang Z, Yu H, Ma K, Chen YZ, Zhang XQ, Wang TX, Li SB, Zhu XQ, Wang XF (2018) Flower-like surface of three-metal-component layered double hydroxide composites for improved antibacterial activity of lysozyme. Bioconjugate Chem 29:2090–2099

    Article  CAS  Google Scholar 

  18. Wen J, Yang K, Ding XC, Li HJ, Xu YQ, Liu FY, Sun SG (2019) In situ formation of homogeneous tellurium nanodots in paclitaxel-loaded MgAl layered double hydroxide gated mesoporous silica nanoparticles for synergistic chemo/PDT/PTT trimode combinatorial therapy. Inorg Chem 58:2987–2996

    Article  CAS  Google Scholar 

  19. Senapati S, Thakur R, Verma SP, Duggal S, Mishra DP, Das P (2016) Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions. J Controlled Release 224:186–198

    Article  CAS  Google Scholar 

  20. Zhang H, Pan DK, Duan X (2009) Synthesis, characterization, and magnetically controlled release behavior of novel core–shell structural magnetic ibuprofen-intercalated LDH nanohybrids. J Phys Chem C 113:12140–12148

    Article  CAS  Google Scholar 

  21. Figueiredo MP, Cunha VRR, Leroux F, Taviot-Gueho C, Nakamae MN, Kang YR, Souza RB, Martins AM, Koh IH, Constantino VR (2018) Iron-based layered double hydroxide implants: potential drug delivery carriers with tissue biointegration promotion and blood microcirculation preservation. ACS Omega 3:18263–18274

    Article  CAS  Google Scholar 

  22. Timóteo TR, Melo CG, Danda LJ, Silva LC, Fontes DA, Silva PC, Aguilera CS, Siqueira LP, Rolim LA, Neto PJ (2019) Layered double hydroxides of CaAl: a promising drug delivery system for increased dissolution rate and thermal stability of praziquantel. Appl Clay Sci 180:105197–105203

    Article  CAS  Google Scholar 

  23. Morais AF, Silva IG, Lima BC, Garcia FA, Mustafa D (2020) Coordination of Eu3+ activators in ZnAlEu layered double hydroxides intercalated by isophthalate and nitrilotriacetate. ACS Omega 5:23778–23785

    Article  CAS  Google Scholar 

  24. Yasaei M, Khakbiz M, Ghasemi E, Zamanian A (2019) Synthesis and characterization of ZnAl-NO3(-CO3) layered doublehydroxide: a novel structure for intercalation and release of simvastatin. Appl Surf Sci 467/468:782–791

    Article  CAS  Google Scholar 

  25. Djebbi MA, Elabed A, Bouaziz Z, Sadiki M, Elabed S, Namour P, Jaffrezic-Renault N, Amara AB (2016) Delivery system for berberine chloride based on the nanocarrier ZnAl-layered double hydroxide: physicochemical characterization, release behavior and evaluation of antibacterial potential. Int J Pharm 515:422–430

    Article  CAS  Google Scholar 

  26. Li MX, Sultanbaw Y, Xu ZP, Gu WY, Chen WY, Liua JY, Qian GR (2019) High and long-term antibacterial activity against Escherichia coli via synergy between the antibiotic penicillin G and its carrier ZnAl layered double hydroxide. Collod Surf B: Biointerf 174:435–442

    Article  CAS  Google Scholar 

  27. Rebitski EP, Souza GP, Santana SA, Pergher SB, Alcântara AC (2019) Bionanocomposites based on cationic and anionic layered clays as controlled release devices of amoxicillin. Appl Clay Sci 173:35–45

    Article  CAS  Google Scholar 

  28. Kamyar A, Khakbiz M, Zamanian A, Yasaei M, Yarmand B (2019) Synthesis of a novel dexa-methasone intercalated layered double hydroxide nanohybrids and their deposition on anodized titanium nanotubes for drug delivery purposes. J Solid State Chem 271:144–153

    Article  CAS  Google Scholar 

  29. Chakraborty M, Dasgupta S, Soundrapandian C, Chakraborty J, Ghosh S, Mitra MK, Basu D (2011) Methotrexate intercalated ZnAl-layered double hydroxide. J Solid State Chem 184:2439–2445

    Article  CAS  Google Scholar 

  30. Choi G, Kim TH, Oh JM, Choy JH (2018) Emerging nanomaterials with advanced drug delivery functions, focused on methotrexate delivery. Coord Chem Rev 359:32–51

    Article  CAS  Google Scholar 

  31. Jin L, Liu Q, Sun ZY, Ni XY, Wei M (2010) Preparation of 5-fluorouracil/β-cyclodextrin complex intercalated in layered double hydroxide and the controlled drug release properties. Ind Eng Chem Res 49:11176–11181

    Article  CAS  Google Scholar 

  32. Liu JX, Zhao Q, Zhang XG (2017) Structure and slow release property of chlorpyrifos/graphene oxide-ZnAl layered double hydroxide composite. Appl Clay Sci 145:44–52

    Article  CAS  Google Scholar 

  33. Yasaei M, Khakbiz M, Zamanian A, Ghasemi E (2019) Synthesis and characterization of Zn/Al-LDH@SiO2 nanohybrid:Intercalation and release behavior of vitamin C. Mater Sci Eng C 103:109816

    Article  CAS  Google Scholar 

  34. Tang LP, Cheng HM, Cui SM, Wang XR, Song LY, Zhou W, Li SJ (2018) DL-mandelic acid intercalated Zn-Al layered double hydroxide: a novel antimicrobial layered material. Collod Surf B: Biointerf 165:111–117

    Article  CAS  Google Scholar 

  35. Jensen ND, Bjerring M, Nielsen UG (2016) A solid state NMR study of layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug. Solid State Nucl Magn Reson 78:9–15

    Article  CAS  Google Scholar 

  36. Naghiloo M, Yousefpour M, Nourbakhsh MS, Taherian Z (2015) Functionalization of SBA-16 silica particles for ibuprofen delivery. J Sol-Gel Sci Technol 74:537–543

    Article  CAS  Google Scholar 

  37. Li QY, Ma KR, Zhou YL, Nie ZR, Wei Q (2017) Loading and release of ibuprofen (IBU)in a novel network hollow magnetic mesoporous SiO2/Fe3O4 microspheres (HMMSs). J Sol-Gel Sci Technol 82:692–701

    Article  CAS  Google Scholar 

  38. Quevedo GP, Celis AC, Ordonez CV, Martinez MLO (2018) SBA-type mesoporous materials with cylindrical and spherical structures for the controlled loading and release of ibuprofen. J Sol-Gel Sci Technol 85:486–494

    Article  CAS  Google Scholar 

  39. Chen YF, Zhou SH, Li F, Chen YW (2010) Synthesis and photoluminescence of Eu-doped Zn/Al layered double hydroxides. J Mater Sci 45:6417–6423

    Article  CAS  Google Scholar 

  40. Chen YF, Li F, Zhou SH, Wei JC, Dai YF, Chen YW (2010) Structure and photo-luminescence of Mg–Al–Eu ternary hydrotalcite-like layered double hydroxides. J Solid State Chem 183:2222–2226

    Article  CAS  Google Scholar 

  41. Vial S, Prevot V, Leroux F, Forano C (2008) Immobilization of urease in ZnAl layered double hydroxides by soft chemistry routes. Micropor Mesopor Mater 107:190–201

    Article  CAS  Google Scholar 

  42. Chen YF, Bao Y, Yang GC, Yu ZP (2016) Study on structure and photoluminescence of Tb-doped ZnAl-NO3 layered double hydroxides prepared by co-precipitation. Mater Chem Phys 176:24–31

    Article  CAS  Google Scholar 

  43. Huang QY, Wang YB, Zhou BT, Wei YZ, Gao F, Fujita T (2021) The effect of ZnAl-LDHs-CO3 on the corrosion behaviour of Zn-5Al alloys in 3.5wt.% NaCl solution. Corros Sci 179:109165

    Article  CAS  Google Scholar 

  44. Gil J, Aguilar-Martínez O, Piña-Pérez Y, Pérez-Hernández R, Santolalla-Vargas CE, Gómez R, Tzompantzi F (2020) Efficient ZnS-ZnO/ZnAl-LDH composite for H2 production by photocatalysis. Renew Energy 145:124–132

    Article  CAS  Google Scholar 

  45. Djaballah R, Bentouami A, Benhamou A, Boury B, Elandaloussi EH (2018) The use of Zn-Ti layered double hydroxide interlayer spacing property for low-loading drug and low-dose therapy. Synthesis, characterization and release kinetics study. J Alloy Compds 739:559–567

    Article  CAS  Google Scholar 

  46. Ay AN, Zümreoglu-Karan B, Temel A, Rives V (2009) Bioinorganic magnetic core-shell nano-composites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite. Inorg Chem 48:8871–8877

    Article  CAS  Google Scholar 

  47. Lu X, Meng L, Li H, Du N, Zhang R, Hou W (2013) Facile fabrication of ibupro-fene LDH nanohybrids via a delamination/reassembling process. Mater Res Bull 48:1512–1517

    Article  CAS  Google Scholar 

  48. Rojas R, Linck YG, Cuffini SL, Monti GA, Giacomelli CE (2015) Structural and physico-chemical aspects of drug release from layered double hydroxides and layered hydroxide salts. Appl Clay Sci 109/110:119–126

    Article  CAS  Google Scholar 

  49. Rojas R, Palena MC, Jimenez-Kairuz AF, Manzo RH, Giacomelli CE (2012) Modeling drug release from a layered double hydroxide–ibuprofen complex. Appl Clay Sci 62/63:15–20

    Article  CAS  Google Scholar 

  50. Abioye AO, Armitage R, Kola-Mustapha AT (2016) Thermodynamic changes induced by inter-molecular interaction between ibuprofen and chitosan: effect on crystal habit, solubility and in vitro release kinetics of ibuprofen. Pharm Res 33:337–357

    Article  CAS  Google Scholar 

  51. Sogias IA, Williams AC, Khutoryanskiy VV (2012) Chitosan-based mucoadhesive tablets for oral delivery of ibuprofen. Int J Pharm 436:602–610

    Article  CAS  Google Scholar 

  52. Ćirić A, Medarević, Čalija B, Dobričić V, Rmandić M, Barudžija T, Malenovićc A, Djekic L (2021) Effect of ibuprofen entrapment procedure on physicochemical andcontrolled drug release performances of chitosan/xanthan gumpolyelectrolyte complexes. Int J Bio Macromole 167:547–558

    Article  CAS  Google Scholar 

  53. Hussain A, Smith G, Khan KA, Bukhari NI, Pedge NI, Ermolina I (2018) Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients. Eur J Pharm Sci 123:395–403

    Article  CAS  Google Scholar 

  54. Abioye AO, Armitage R, Kola-Mustapha AT (2016) Thermodynamic changes induced byintermolecular interaction between ibuprofen and chitosan: effect on crystal habit, solubility and in vitro release kinetics of ibuprofen. Pharm Res 33:337–357

    Article  CAS  Google Scholar 

  55. Ambrogi V, Fardella G, Grandolini G, Perioli L (2001) Intercalation compounds of hydro-talcite-like anionic clays with antiinflammatory agents intercalation and in vitro release of ibuprofen. Int J Pharm 220:23–32

    Article  CAS  Google Scholar 

  56. Barnabas MJ, Parambadath S, Ha CS (2017) Amino modified core–shell mesoporous silica based layered double hydroxide (MS-LDH) for drug delivery. J Ind Eng Chem 53:392–403

    Article  CAS  Google Scholar 

  57. Kindrat II, Padlyak BV, Lisiecki R, Adamiv VT, Teslyuk IM (2018) Enhancement of the Er3+ luminescence in Er–Ag co-dopedLi2B4O7 glasses. Opt Mater 85:238–245

    Article  CAS  Google Scholar 

  58. Kataria V, Mehta DS (2019) Investigation of concurrent emissions in visible, UV and NIR region in Gd2O2S: Er, Yb nanophosphor by diverse excitation wavelengths as a function of firing temperature. Opt Mater 95:109204

    Article  CAS  Google Scholar 

  59. Chen YF, Zhang YJ, Zhang JW, Li C, Wang L (2021) Brucite structure doped with different amounts of Er(III) and theirinfrared emissions. J Aust Ceram Soc 57:67–79

    Article  CAS  Google Scholar 

  60. Khrushchalina SA, Ryabochkina PA, Zharkov MN, Kyashkin VM, Tabachkova NY, Yurlov IA (2019) Broad band emission from Er-contained yttrium orthophosphate and orthovanadate nanopowders excited by near infrared radiation. J Lumin 205:560–567

    Article  CAS  Google Scholar 

  61. Xin M (2019) High luminescent TiO2-Yb2O3: Er, Li complex nano spherical upconversion phosphor prepared by a hydrothermally treatment. J Lumin 213:415–420

    Article  CAS  Google Scholar 

  62. Mikalauskaite I, Pleckaityte G, Skapas M, Zarkov A, Katelnikovas A, Beganskiene A (2019) Emission spectra tuning of upconverting NaGdF4:20% Yb, 2% Er nanoparticles by Cr3+ codoping for optical temperature sensing. J Lumin 213:210–217

    Article  CAS  Google Scholar 

  63. Xia H, Lei L, Xia JP, Hua YJ, Deng DG, Xu SQ (2019) Yb/Er/Tm tri-doped Na3ZrF7 upconversion nanocrystals for high performance temperature sensing. J Lumin 209:8–13

    Article  CAS  Google Scholar 

  64. Chen YF, Zhang JW, Zhang YJ, Wang L (2020) Synthesis of Er3+-doped hydrocalumite and its strong infrared emissions. J Iran Chem Soc 17:1933–1944

    Article  CAS  Google Scholar 

  65. Bhiri NM, Dammak M, Aguiló M, Díaz F, Pujol MC (2020) Stokes and anti-Stokes operating conditions dependent luminescence thermometric performance of Er3+-doped and Er3+, Yb3+ co-doped GdVO4 microparticles in the nonsaturation regime. J Alloy Compds 814:152197

    Article  CAS  Google Scholar 

  66. Chen YF, Wang XQ, Zhang KL, Bao Y (2017) Intercalation of cytosine into Eu3+ doped hydrocalumite and their fluorescent responses. J Iran Chem Soc 14:2417–2426

    Article  CAS  Google Scholar 

  67. Chen YF, Wang XQ, Bao Y, Wu WN (2017) Study on structure and fluorescence of Tb-doped CaAl LDHs prepared in ethanol/water system. J Sol-Gel Sci Technol 81:413–422

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the National Natural Science Foundation of China (51864033, 21978127) and the National Key Research Development Program of China (2019YFC0605000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yin, S., Zhou, H. et al. Near-infrared emission carrier, Er3+-doped ZnAl-LDH, for delivery and release of ibuprofen in vitro. J Sol-Gel Sci Technol 99, 430–443 (2021). https://doi.org/10.1007/s10971-021-05575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05575-1

Keywords

Navigation