Skip to main content
Log in

On the Use of Steady-State Optimal Initial Operating Conditions for Control Scheme Implementation of a Fixed-Bed Fischer–Tropsch Reactor

  • Research Article-Chemical
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A control scheme implementation for a fixed-bed Fischer–Tropsch synthesis (FTS) reactor using the optimal initial operating conditions at steady-state is developed. The proposed approach consists of solving a nonlinear constrained optimization problem for a fixed-bed FTS reactor with incorporation of a control scheme in the cooling jacket in order to find the optimal values of the initial operating conditions of temperature, gas-hourly space velocity (GHSV), pressure and coolant flow velocity under a steady-state regime that maximizes CO conversion and \({\mathrm{C}}_{5+}\) product selectivities. Such optimal operating conditions at steady-state are used to evaluate the dynamic behavior of the reactor under the proportional-integral control (PIC) scheme action that is implemented in the cooling jacket. An extended dynamic one-dimensional pseudohomogeneous model of a fixed-bed FTS reactor recently reported in the literature is used. The obtained results show the importance of the implementation of dynamic control strategies for the FTS carried out in a fixed-bed reactor, since they allow for ensuring the thermal control of such highly exothermic reactions and assure better reactor performance in terms of high CO conversion and liquid products selectivity (C5+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A j :

j-th pre-exponential factor of FTS reaction, (J/mol)

C i :

Molar concentration of component i, (mol/m3)

C i ,0 :

Initial molar concentration of component i, (moli/m3)

\(C_{{{\text{P}}_{{{\text{mix,G}}}}}}\) :

Specific heat capacity of the gaseous mixture, (J/(Kg K))

\(C_{{{\text{P}}_{i}}}\) C Pi :

Specific heat capacity of component i, (J/(Kg K))

d p :

Average particle diameter, (m)

d t :

Diameter of the reactor tube, (m)

E a, j :

j-th Activation energy according to the Arrhenius equation, (J/mol)

f p :

Friction factor, (dimensionless)

h int :

Convective heat transfer coefficient on the side wall, (W/m2 K)

h ext :

Convective heat transfer coefficient on the side FTS reaction, (W/m2 K)

L B :

Catalytic bed length, (m)

m j :

j-th Reaction order for partial pressure of CO, (dimensionless)

Mmix,G :

Molecular weight of the gas mixture, (Kgmix/molmix)

n j :

j-th Reaction order for partial pressure of H2, (dimensionless)

p i :

Partial pressure of component i, (Pa)

P T :

Total system pressure, (Pa)

R j :

j-th reaction rate of Fischer–Tropsch synthesis, (mol/(Kgcat·s))

R :

Ideal gas constant, (8.314471 J/(mol K))

T :

Absolute temperature, (K)

T 0 :

Initial system temperature, (K)

u s :

Superficial gas velocity, (m3/(m2·s))

U r :

Overall heat transfer coefficient, (W/(m2·K))

y i :

Molar fraction of component i, (dimensionless)

z :

Axial coordinate, (m)

β :

Volume fraction of active site of the solid particles, (dimensionless)

δ W :

Tube wall thickness, (m)

ΔH FTS ,j :

j-th reaction heat (reaction enthalpy) of the Fischer–Tropsch synthesis, (J/Kg)

ε B :

Porosity of the catalytic bed, (m3(G+L)/m3)

λ w :

Thermal conductivity of the reactor wall, (J/(m·s·K))

μ i :

Dynamic viscosity of component i, (Kg/(m·s))

μ mix ,G :

Dynamic viscosity of the gaseous mixture, (Kg/(m·s))

ρ B :

Catalytic bed density, (Kg/(m3cat))

ρ mix ,G :

Density of gas mixture, (Kg/m3)

υ j :

Stoichiometric coefficient for the hydrogen consumption kinetic rate

B:

Referred to the catalytic bed reactor

calc:

Calculate value

CO:

Molecular carbon monoxide

exp:

Experimental value

FTS:

Fischer–Tropsch synthesis

G:

Gas

H2 :

Molecular hydrogen

i :

Component

mix:

Mixture

p:

Particle

r:

Referred to the reactor

s:

Referred to superficial velocity

t:

Reactor tube

W:

Water

0:

Initial condition

f :

Phase

m :

Reaction order for carbon monoxide

n :

Reaction order for hydrogen

Re:

Reynolds number

References

  1. Moka, S.; Pande, M.; Rani, M.; Gakhar, R.; Sharma, M.; Rani, J.; Bhaskarwar, A.N.: Alternative fuels: an overview of current trends and scope for future. Energy Rev. 32, 697 (2014). https://doi.org/10.1016/j.rser.2014.01.023

    Article  Google Scholar 

  2. Van der Laan, G.P.; Beenackers, A.A.C.M.: Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal. Rev. Sci. Eng. 1, 255 (1999). https://doi.org/10.1081/CR-100101170

    Article  Google Scholar 

  3. Méndez, C.I.; Ancheyta, J.: Kinetic models for Fischer-Tropsch synthesis for the production of clean fuels. Catal. Today 353, 3–16 (2020). https://doi.org/10.1016/j.cattod.2020.02.012

    Article  Google Scholar 

  4. Moazami, N.; Wyszynski, M.L.; Rahbar, K.; Tsolakis, A.; Mahmoudi, H.: A comprehensive study of kinetics mechanism of Fischer–Tropsch synthesis over cobalt-based catalyst. Chem. Eng. Sci. 171, 32 (2017). https://doi.org/10.1016/j.ces.2017.05.022

    Article  Google Scholar 

  5. Méndez, C.I.; Ancheyta, J.; Trejo, F.: Modeling of catalytic fixed-bed reactors for fuels production by Fischer–Tropsch synthesis. Energy Fuels. 31, 13011–13042 (2017). https://doi.org/10.1021/acs.energyfuels.7b01431

    Article  Google Scholar 

  6. Na, J.; Kshetrimayum, K.S.; Lee, U.; Han, C.: Multi-objective optimization of microchannel reactor for Fischer–Tropsch synthesis using computational fluid dynamics and genetic algorithm. Chem. Eng. J. 313, 1521–1534 (2017). https://doi.org/10.1016/j.cej.2016.11.040

    Article  Google Scholar 

  7. Rahimpour, M.R.; Khademi, M.H.; Bahmanpour, A.M.: A comparison of conventional and optimized thermally coupled reactors for Fischer–Tropsch synthesis in GTL technology. Chem. Eng. Sci. 65, 6206 (2010). https://doi.org/10.1016/j.ces.2010.09.002

    Article  Google Scholar 

  8. Bayat, M.; Rahimpour, M.R.: Boosting the gasoline production via a novel multifunctional Fischer–Tropsch reactor: simulation and optimization. J. Nat. Gas Sci. Eng. 11, 52 (2013). https://doi.org/10.1016/j.jngse.2012.12.003

    Article  Google Scholar 

  9. Bayat, M.; Hamidi, M.; Dehghani, Z.; Rahimpour, M.R.: Sorption-enhanced Fischer–Tropsch synthesis with continuous adsorbent regeneration in GTL technology: modeling and optimization. J. Ind. Eng. Chem. 20, 858 (2014). https://doi.org/10.1016/j.jiec.2013.06.016

    Article  Google Scholar 

  10. Esfandyari, M.; Amiri, M.; Koolivand-Salooki, M.: Neural network prediction of the Fischer-Tropsch synthesis of natural gas with Co (III)/Al2O3 catalyst. Chem. Eng. Res. Bull. 17, 25–33 (2015). https://doi.org/10.3329/cerb.v17i1.22915

    Article  Google Scholar 

  11. Atashi, H.; Gholizadeh, J.; Tabrizi, F.F.; Tayebi, J.: Modeling selectivity of ethylene and propylene in the Fischer-Tropsch synthesis with artificial neural network and response surface methodology. Chem. Sel. 1, 3271–3275 (2016). https://doi.org/10.1002/slct.201600310

    Article  Google Scholar 

  12. Abou Daher, M.: Development of a model for packed foam Fischer-Tropsch reactors and optimization through artificial neural networks. Master thesis, Politecnico di Miliano-School of Science in Chemical Engineering (2019)

  13. Ojha, V.K.; Abraham, A.; Snašel, V.: Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017). https://doi.org/10.1016/j.engappai.2017.01.013

    Article  Google Scholar 

  14. Méndez, C.I.; Ancheyta, J.; Trejo, F.: Importance of proper hydrodynamics modelling in fixed-bed reactors: Fischer–Tropsch synthesis study case. Can. J. Chem. Eng. 97, 2685–2698 (2018). https://doi.org/10.1002/cjce.23518

    Article  Google Scholar 

  15. Méndez, C.I.; Ancheyta, J.: Dynamic one-dimensional pseudohomogeneous model for Fischer–Tropsch fixed-bed reactors. Fuel 252, 371–392 (2019). https://doi.org/10.1016/j.fuel.2019.04.100

    Article  Google Scholar 

  16. Constantinides, A.; Mostoufi, N.: Numerical methods for chemical engineers with Matlab applications, Vol. 5, 1st edn., p. 323–330. Prentice Hall, New Jersey (1999)

    Google Scholar 

  17. Haarlemmer, G.; Bensabath, T.: Comprehensive Fischer–Tropsch reactor model with non-ideal plug flow and detailed reaction kinetics. Comput. Chem. Eng. 84, 281 (2016). https://doi.org/10.1016/j.compchemeng.2015.08.017

    Article  Google Scholar 

  18. Allen, K.G.; von Backström, T.W.; Kröger, D.G.: Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness. Powder Technol. 246, 590 (2013). https://doi.org/10.1016/j.powtec.2013.06.022

    Article  Google Scholar 

  19. Sharma, A.; Régis, P.; Luck, F.; Schweich, D.: A simple and realistic fixed bed model for investigating Fischer–Tropsch catalyst activity at lab-scale and extrapolating to industrial conditions. Chem. Eng. Sci. 66, 6358 (2011). https://doi.org/10.1016/j.ces.2011.04.032

    Article  Google Scholar 

  20. Marvast, M.A.; Sohrabi, M.; Zarrinpashne, S.; Baghmisheh, G.: Fischer–Tropsch synthesis: modeling and performance study for Fe-HZSM5 bifunctional catalyst. Chem. Eng. Technol. 28, 78 (2005). https://doi.org/10.1002/ceat.200407013

    Article  Google Scholar 

  21. Yang, J.; Liu, Y.; Chang, J.; Wang, Y.; Bai, L.; Xu, Y.; Xiang, H.; Li, Y.; Zhong, B.: Detailed kinetics of Fischer−Tropsch synthesis on an industrial Fe−Mn catalyst. Ind. Eng. Chem. Res. 42, 5066 (2003). https://doi.org/10.1021/ie030135o

    Article  Google Scholar 

  22. Wang, Y.N.; Ma, W.P.; Lu, Y.J.; Yang, J.; Xu, Y.Y.; Xiang, H.W.; Li, Y.W.; Zhao, Y.L.; Zhang, B.J.: Kinetics modelling of Fischer–Tropsch synthesis over an industrial Fe–Cu–K catalyst. Fuel 82, 195 (2003). https://doi.org/10.1016/S0016-2361(02)00154-0

    Article  Google Scholar 

  23. Perry, R.; Green, D.: Perry’s Chemical Engineers’ Handbook, 8th edn. McGraw-Hill Education, New York (2008)

    Google Scholar 

  24. Yaws CL.: Yaws’ transport properties of chemicals and hydrocarbons (Electronic edition). ed: Knovel

  25. Moazami, N.; Wyszynski, M.L.; Mahmoudi, H.; Tsolakis, A.; Zou, Z.; Panahifar, P.; Rahbar, K.: Modelling of a fixed bed reactor for Fischer–Tropsch synthesis of simulated N2-rich syngas over Co/SiO2: hydrocarbon production. Fuel 154, 140 (2015). https://doi.org/10.1016/j.fuel.2015.03.049

    Article  Google Scholar 

  26. Froment, G.F.; Bischoff, K.B.: Chemical reactor analysis and design. Wiley, New York (1990)

    Google Scholar 

  27. Panahi, M.: Master's thesis, Sharif University of Technology (2005)

  28. Sandler, S.I.: Chemical, Biochemical, and Engineering Thermodynamics, p. 245. John Wiley & Sons Inc., United States (2006)

    Google Scholar 

  29. Tosun, I.: Modeling in transport phenomena, 2nd edn. Elsevier Science and Technology Books (2007)

  30. Mehta, S.; Ricardez-Sandoval, L.A.: Integration of design and control of dynamic systems under uncertainty: a new back-off approach. Ind. Eng. Chem. Res. 55, 485 (2016). https://doi.org/10.1021/acs.iecr.5b03522

    Article  Google Scholar 

  31. Rafiei-Shishavan, M.; Mehta, S.; Ricardez-Sandoval, L.A.: Simultaneous design and control under uncertainty: a back-off approach using power series expansions. Comput. Chem. Eng. 99, 66 (2017). https://doi.org/10.1016/j.compchemeng.2016.12.015

    Article  Google Scholar 

  32. Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes, 1st edn. Pittsburgh Pennsylvania (2010)

  33. Edgar, T.F.; Himmelblau, D.M.: Optimization chemical processes, 2nd edn. McGraw Hill, New York (2001)

    Google Scholar 

  34. Kaskes, B.; Vervloet, D.; Kapteijn, F.; van Ommen, J.R.: Numerical optimization of a structured tubular reactor for Fischer–Tropsch synthesis. Chem. Eng. J. 283, 1465 (2016). https://doi.org/10.1016/j.cej.2015.08.078

    Article  Google Scholar 

  35. Kwack, S.; Bae, J.W.; Park, M.; Kim, S.; Ha, K.; Jun, K.: Reaction modeling on the phosphorous-treated Ru/Co/Zr/SiO2 Fischer–Tropsch catalyst with the estimation of kinetic parameters and hydrocarbon distribution. Fuel 90, 1383 (2011). https://doi.org/10.1016/j.fuel.2011.01.010

    Article  Google Scholar 

  36. Rafiq, M.H.; Jakobsen, H.A.; Schmid, R.; Hustad, J.E.: Experimental studies and modeling of a fixed bed reactor for Fischer–Tropsch synthesis using biosyngas. Fuel Process. Technol. 92, 893 (2011). https://doi.org/10.1016/j.fuproc.2010.12.008

    Article  Google Scholar 

  37. Stephanopoulos, G.: Chemical Process Control an Introduction to Theory and Practice, 1st edn. Prentice Hall, New Jersey (1985)

    Google Scholar 

  38. Box, G.; Luceño, A.: Discrete proportional-integral adjustment and statistical process control. J. Qual. Technol. 29, 248 (1997). https://doi.org/10.1080/00224065.1997.11979767

    Article  MATH  Google Scholar 

  39. Tyreus, B.D.; Luyben, W.L.: Tuning PI controllers for integrator/dead time processes. Ind. Eng. Chem. Res. 31, 2625 (1992). https://doi.org/10.1021/ie00011a029

    Article  Google Scholar 

  40. Dai, X.P.; Liu, P.Z.; Shi, Y.; Xu, Y.; Wei, W.S.: Fischer–Tropsch synthesis in a bench-scale two-stage multitubular fixed-bed reactor: simulation and enhancement in conversion and diesel selectivity. Chem. Eng. Sci. 105, 1 (2014). https://doi.org/10.1016/j.ces.2013.09.057

    Article  Google Scholar 

  41. Bansal, V.; Perkins, J.D.; Pistikopoulos, E.N.; Ross, R.; van Schijndel, J.M.G.: Simultaneous design and control optimisation under uncertainty. Comput. Chem. Eng. 24, 261 (2000). https://doi.org/10.1016/S0098-1354(00)00475-0

    Article  Google Scholar 

  42. Pistikopoulos, E.N.; Mazzuchi, T.A.: A novel flexibility analysis approach for processes with stochastic parameters. Comput. Chem. Eng. 14, 991 (1990). https://doi.org/10.1016/0098-1354(90)87055-T

    Article  Google Scholar 

  43. Dimitriadis, V.D.; Pistikopoulos, E.N.: Flexibility analysis of dynamic systems. Ind. Eng. Chem. Res. 34, 4451 (1995). https://doi.org/10.1021/ie00039a036

    Article  Google Scholar 

  44. van Berge, P.J.; Everson, R.C.: Cobalt as an alternative Fischer-Tropsch catalyst to iron for the production of middle distillates. Stud. Surf. Sci. Catal. 107, 207–212 (1997). https://doi.org/10.1016/S0167-2991(97)80336-9

    Article  Google Scholar 

  45. Yan, Z.; Wang, Z.; Bukur, D.B.; Goodman, D.W.: Fischer–Tropsch synthesis on a model Co/SiO2 catalyst. J Catal. 268, 196 (2009). https://doi.org/10.1016/j.jcat.2009.09.015

    Article  Google Scholar 

  46. Lee, T.S.; Chung, J.N.: Mathematical modeling and numerical simulation of a Fischer–Tropsch packed bed reactor and its thermal management for liquid hydrocarbon fuel production using biomass syngas. Energy Fuels 26, 1363 (2012). https://doi.org/10.1021/ef201667a

    Article  Google Scholar 

  47. Dry, M.E.: In: Anderson, J.R.; Boudart, M. (Eds.) Catalysis-Science and Technology, pp. 160–255. Springer, New York (1981)

    Google Scholar 

  48. Kuipers, E.W.; Scheper, C.; Wilson, J.H.; Vinkenburg, I.H.; Oosterbeek, H.: Non-ASF product distributions due to secondary reactions during Fischer–Tropsch synthesis. J. Catal. 158, 288 (1996). https://doi.org/10.1006/jcat.1996.0028

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to the Instituto Mexicano del Petróleo for the financial support. C.I.M. thanks to the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ancheyta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez, C.I., Trejo, F. & Ancheyta, J. On the Use of Steady-State Optimal Initial Operating Conditions for Control Scheme Implementation of a Fixed-Bed Fischer–Tropsch Reactor. Arab J Sci Eng 47, 6099–6113 (2022). https://doi.org/10.1007/s13369-021-05897-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05897-w

Keywords

Navigation