Skip to main content
Log in

Huntington’s Chorea—a Rare Neurodegenerative Autosomal Dominant Disease: Insight into Molecular Genetics, Prognosis and Diagnosis

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Huntington’s disease is a neurodegenerative autosomal disease results due to expansion of polymorphic CAG repeats in the huntingtin gene. Phosphorylation of the translation initiation factor 4E-BP results in the alteration of the translation control leading to unwanted protein synthesis and neuronal function. Consequences of mutant huntington (mhtt) gene transcription are not well known. Variability of age of onset is an important factor of Huntington’s disease separating adult and juvenile types. The factors which are taken into account are—genetic modifiers, maternal protection i.e excessive paternal transmission, superior ageing genes and environmental threshold. A major focus has been given to the molecular pathogenesis which includes—motor disturbance, cognitive disturbance and neuropsychiatric disturbance. The diagnosis part has also been taken care of. This includes genetic testing and both primary and secondary symptoms. The present review also focuses on the genetics and pathology of Huntington’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability and Materials Availability

Not applicable as this is a review article.

Code Availability

Not applicable

References

  1. Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y. Z., Gohler, H., & Thompson, L. M. (2000). The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proceedings of the National Academy of Sciences, 97(12), 6763–6768. https://doi.org/10.1073/pnas.100110097.

    Article  CAS  Google Scholar 

  2. Bae, B. I., Xu, H., Igarashi, S., Fujimuro, M., Agrawal, N., Taya, Y., et al. (2005). p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron, 47(1), 29–41. https://doi.org/10.1016/j.neuron.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  3. Ghose, J., Sinha, M., Das, E., Jana, N. R., & Bhattacharyya, N. P. (2011). Regulation of miR-146a by RelA/NFkB and p53 in STHdhQ111/HdhQ111 cells, a cell model of Huntington’s disease. PloS ONE, 6(8), e23837. https://doi.org/10.1371/journal.pone.0023837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pause, A., Belsham, G. J., Gingras, A. C., Donzé, O., Lin, T. A., Lawrence, J. C., & Sonenberg, N. (1994). Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature, 371(6500), 762–767. https://doi.org/10.1038/371762a0.

    Article  CAS  PubMed  Google Scholar 

  5. Gingras, A. C., Gygi, S. P., Raught, B., Polakiewicz, R. D., Abraham, R. T., Hoekstra, M. F., Aebersold, R., & Sonenberg, N. (1999). Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes & development, 13(11), 1422–1437.

    Article  CAS  Google Scholar 

  6. Ito, H., Ichiyanagi, O., Naito, S., Bilim, V. N., Tomita, Y., Kato, T., Nagaoka, A., & Tsuchiya, N. (2016). GSK-3 directly regulates phospho-4EBP1 in renal cell carcinoma cell-line: an intrinsic subcellular mechanism for resistance to mTORC1 inhibition. BMC cancer, 16(1), 393. https://doi.org/10.1186/s12885-016-2418-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, S. H., & Li, X. J. (2004). Huntingtin–protein interactions and the pathogenesis of Huntington's disease. TRENDS in Genetics, 20(3), 146–154. https://doi.org/10.1016/j.tig.2004.01.008.

    Article  CAS  PubMed  Google Scholar 

  8. Raychaudhuri, S., Sinha, M., Mukhopadhyay, D., & Bhattacharyya, N. P. (2008). HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity. Human molecular genetics, 17(2), 240–255. https://doi.org/10.1093/hmg/ddm301.

    Article  CAS  PubMed  Google Scholar 

  9. Vonsattel, J. P. G., & DiFiglia, M. (1998). Huntington disease. Journal of neuropathology and experimental neurology, 57(5), 369–384.

    Article  CAS  PubMed  Google Scholar 

  10. Kremer, B., Almqvist, E., Theilmann, J., Spence, N., Telenius, H., Goldberg, Y. P., & Hayden, M. R. (1995). Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. American journal of human genetics, 57(2), 343.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Squitieri, F., Andrew, S. E., Goldberg, Y. P., Kremer, B., Spence, N., Zelsler, J., et al. (1994). DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Human molecular genetics, 3(12), 2103–2114. https://doi.org/10.1093/hmg/3.12.2103.

    Article  CAS  PubMed  Google Scholar 

  12. Rubinsztein, D. C., Barton, D. E., Davison, B. C., & Ferguson-Smith, M. A. (1993). Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Huntington’s disease and CAG repeat number. Human molecular genetics, 2(10), 1713–1715. https://doi.org/10.1093/hmg/2.10.1713.

    Article  CAS  PubMed  Google Scholar 

  13. Ma, M., Yang, Y., Shang, H., Su, D., Zhang, H., Ma, Y., Liu, Y., Tao, D., & Zhang, S. (2010). Evidence for a predisposing background for CAG expansion leading to HTT mutation in a Chinese population. Journal of the neurological sciences, 298(1-2), 57–60. https://doi.org/10.1016/j.jns.2010.08.024.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, C. K., Wu, Y. R., Hwu, W. L., Chen, C. M., Ro, L. S., Chen, S. T., et al. (2004). DNA haplotype analysis of CAG repeat in Taiwanese Huntington’s disease patients. European neurology, 52(2), 96–100. https://doi.org/10.1159/000079938.

    Article  CAS  PubMed  Google Scholar 

  15. Persichetti, F., Ambrose, C. M., Ge, P., McNeil, S. M., Srinidhi, J., Anderson, M. A., et al. (1995). Normal and expanded Huntington’s disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Molecular Medicine, 1(4), 374–383. https://doi.org/10.1007/BF03401575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chao, T. K., Hu, J., & Pringsheim, T. (2017). Risk factors for the onset and progression of Huntington disease. Neurotoxicology, 61, 79–99. https://doi.org/10.1016/j.neuro.2017.01.005.

    Article  CAS  PubMed  Google Scholar 

  17. Aziz, N. A., van Belzen, M. J., Coops, I. D., Belfroid, R. D., & Roos, R. A. (2011). Parent-of-origin differences of mutant HTT CAG repeat instability in Huntington’s disease. European journal of medical genetics, 54(4), e413–e418. https://doi.org/10.1016/j.ejmg.2011.04.002.

    Article  PubMed  Google Scholar 

  18. Kremer, B., Goldberg, P., Andrew, S. E., Theilmann, J., Telenius, H., Zeisler, J., et al. (1994). A worldwide study of the Huntington’s disease mutation: the sensitivity and specificity of measuring CAG repeats. New England Journal of Medicine, 330(20), 1401–1406.

    Article  CAS  PubMed  Google Scholar 

  19. Novelletto, A., Persichetti, F., Sabbadin, G., Mandich, P., Bellone, E., Ajmar, F., Pergola, M., Senno, L. D., E.MacDonald, M., F.Gusella, J., & Frontall, M. (1994). Analysis of the trinucleotide repeat expansion in Italian families affected with Huntington disease. Human molecular genetics, 3(1), 93–98. https://doi.org/10.1093/hmg/3.1.93.

    Article  CAS  PubMed  Google Scholar 

  20. Trottier, Y., Biancalana, V., & Mandel, J. L. (1994). Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. Journal of medical genetics, 31(5), 377–382. https://doi.org/10.1136/jmg.31.5.377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nørremølle, A., Sørensen, S. A., Fenger, K., & Hasholt, L. (1995). Correlation between magnitude of CAG repeat length alterations and length of the paternal repeat in paternally inherited Huntington’s disease. Clinical genetics, 47(3), 113–117. https://doi.org/10.1111/j.1399-0004.1995.tb03941.x.

    Article  PubMed  Google Scholar 

  22. Maat-Kievit, A., Losekoot, M., Zwinderman, K., Vegter-van der Vlis, M., Belfroid, R., Lopez, F., & Roos, R. (2002). Predictability of age at onset in Huntington disease in the Dutch population. Medicine, 81(4), 251–259.

    Article  CAS  PubMed  Google Scholar 

  23. Semaka, A., Collins, J. A., & Hayden, M. R. (2010). Unstable familial transmissions of Huntington disease alleles with 27–35 CAG repeats (intermediate alleles). American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153(1), 314–320. https://doi.org/10.1002/ajmg.b.30970.

    Article  CAS  Google Scholar 

  24. Hećimović, S., Klepac, N., Vlašić, J., Vojta, A., Janko, D., Škarpa-Prpić, I., et al. (2002). Genetic background of huntington disease in Croatia: molecular analysis of CAG, CCG, and Δ2642 (E2642del) polymorphisms. Human mutation, 20(3), 233–233. https://doi.org/10.1002/humu.9055.

    Article  CAS  PubMed  Google Scholar 

  25. do Carmo Costa, M., Magalhaes, P., Guimaraes, L., Maciel, P., Sequeiros, J., & Sousa, A. (2006). The CAG repeat at the Huntington disease gene in the Portuguese population: insights into its dynamics and to the origin of the mutation. Journal of human genetics, 51(3), 189–195. https://doi.org/10.1007/s10038-005-0343-8.

    Article  CAS  Google Scholar 

  26. García-Planells, J., Burguera, J. A., Solís, P., Millán, J. M., Ginestar, D., Palau, F., & Espinós, C. (2005). Ancient origin of the CAG expansion causing Huntington disease in a Spanish population. Human mutation, 25(5), 453–459. https://doi.org/10.1002/humu.20167.

    Article  CAS  PubMed  Google Scholar 

  27. Yapijakis, C., Vassilopoulos, D., Tzagournisakis, M., Maris, T., Fesdjian, C., Papageorgiou, C., & Plaitakis, A. (1995). Linkage disequilibrium between the expanded (CAG) n repeat and an allele of the adjacent (CCG) n repeat in Huntington’s disease patients of Greek origin. European Journal of Human Genetics, 3(4), 228–234. https://doi.org/10.1159/000472303.

    Article  CAS  PubMed  Google Scholar 

  28. Barron, L. H., Rae, A., Holloway, S., Brock, H., & D. J., & Warner, J. P. (1994). A single allele from the polymorphic CCG rich sequence immediately 3'to the unstable CAG trinucleotide in the IT15 cDNA shows almost complete disequilibrium with Huntington's disease chromosomes in the Scottish population. Human molecular genetics, 3(1), 173–175. https://doi.org/10.1093/hmg/3.1.173.

    Article  CAS  PubMed  Google Scholar 

  29. Atac, F. B., Elibol, B., & Schaefer, F. (1999). The genetic analysis of Turkish patients with Huntington's disease. Acta neurologica scandinavica, 100(3), 195–198. https://doi.org/10.1111/j.1600-0404.1999.tb00738.x.

    Article  CAS  PubMed  Google Scholar 

  30. Myers, R. H., Sax, D. S., Koroshetz, W. J., Mastromauro, C., Cupples, L. A., Kiely, D. K., Pettengill, F. K., & Bird, E. D. (1991). Factors associated with slow progression in Huntington’s disease. Archives of neurology, 48(8), 800–804. https://doi.org/10.1001/archneur.1991.00530200036015.

    Article  CAS  PubMed  Google Scholar 

  31. Feigin, A., Kieburtz, K., Bordwell, K., Como, P., Steinberg, K., Sotack, J., Zimmerman, C., Hickey, C., Orme, C., & Shoulson, I. (1995). Functional decline in Huntington’s disease. Movement disorders: official journal of the Movement Disorder Society, 10(2), 211–214.

    Article  CAS  Google Scholar 

  32. Marder, K., Zhao, H., Myers, R. H., Cudkowicz, M., Kayson, E., Kieburtz, K., Orme, C., Paulsen, J., Penney, J. B., Siemers, E., & Shoulson, I. (2000). Rate of functional decline in Huntington’s disease. Neurology, 54(2), 452–458. https://doi.org/10.1212/WNL.54.2.452.

    Article  CAS  PubMed  Google Scholar 

  33. Reedeker, W., van der Mast, R. C., Giltay, E. J., Kooistra, T. A. D., Roos, R. A. C., & van Duijn, E. (2012). Psychiatric disorders in Huntington's disease: a 2-year follow-up study. Psychosomatics, 53(3), 220–229. https://doi.org/10.1016/j.psym.2011.12.010.

    Article  CAS  PubMed  Google Scholar 

  34. Ehret, J. C., Day, P. S., Wiegand, R., Wojcieszek, J., & Chambers, R. A. (2007). Huntington disease as a dual diagnosis disorder: data from the National Research Roster for Huntington disease patients and families. Drug and alcohol dependence, 86(2-3), 283–286. https://doi.org/10.1016/j.drugalcdep.2006.06.009.

    Article  PubMed  Google Scholar 

  35. Buruma, O. J. S., Van der Kamp, W., Barendswaard, E. C., Roos, R. A. C., Kromhout, D., & Van der Velde, E. A. (1987). Which factors influence age at onset and rate of progression in Huntington’s disease? Journal of the neurological sciences, 80(2-3), 299–306. https://doi.org/10.1016/0022-510X(87)90164-X.

    Article  CAS  PubMed  Google Scholar 

  36. Zielonka, D., Niezgoda, A., Olejniczak, M., Krzyzosiak, W., Marcinkowski, J., & Kozubski, W. (2008). Gender differences in the CAG repeats and clinical picture correlations in Huntington’s disease. Ceska a Slovenska Neurologie a Neurochirurgie, 71, 104.

    Google Scholar 

  37. Auinger, P., Kieburtz, K., & Mcdermott, M. P. (2010). The relationship between uric acid levels and Huntington’s disease progression. Movement disorders, 25(2), 224–228. https://doi.org/10.1002/mds.22907.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Andresen, J. M., Gayán, J., Djoussé, L., Roberts, S., Brocklebank, D., Cherny, S. S., et al. (2007). The relationship between CAG repeat length and age of onset differs for Huntington’s disease patients with juvenile onset or adult onset. Annals of human genetics, 71(3), 295–301. https://doi.org/10.1111/j.1469-1809.2006.00335.x.

    Article  CAS  PubMed  Google Scholar 

  39. Barbeau, A. (1970). Parental ascent in the juvenile form of Huntington's chorea. The Lancet, 296(7679), 937. https://doi.org/10.1016/S0140-6736(70)92119-7.

    Article  Google Scholar 

  40. Merritt, A. D., Conneally, P. M., Rahman, N. F., & Drew, A. L. (1969). Juvenile Huntington’s chorea. Progress in neurogenetics, 1, 645–650.

    Google Scholar 

  41. Finch, C. E. (1980). The relationships of aging changes in the basal ganglia to manifestations of Huntington’s chorea. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 7(5), 406–411. https://doi.org/10.1002/ana.410070503.

    Article  CAS  Google Scholar 

  42. Brackenridge, C. J., & Chamberlin, M. (1974). The relation of the sex of choreic and rigid subjects to the age at onset of Huntington’s disease. Clinical genetics, 5(3), 248–253. https://doi.org/10.1111/j.1399-0004.1974.tb01690.x.

    Article  CAS  PubMed  Google Scholar 

  43. Brackenridge, C. J. (1979). Relation of occupational stress to the age at onset of Huntington’s disease. Acta Neurologica Scandinavica, 60(5), 272–276. https://doi.org/10.1111/j.1600-0404.1979.tb02981.x.

    Article  CAS  PubMed  Google Scholar 

  44. Gusella, J. F., MacDonald, M. E., & Lee, J. M. (2014). Genetic modifiers of Huntington’s disease. Movement Disorders, Official Journal of the International Parkinson and Movement Disorder Society, 29(11), 1359–1365. https://doi.org/10.1002/mds.26001.

    Article  CAS  Google Scholar 

  45. Rosenblatt, A., Kumar, B. V., Mo, A., Welsh, C. S., Margolis, R. L., & Ross, C. A. (2012). Age, CAG repeat length, and clinical progression in Huntington’s disease. Movement disorders, Official Journal of the International Parkinson and Movement Disorder Society., 27(2), 272–276. https://doi.org/10.1002/mds.24024.

    Article  Google Scholar 

  46. Harper, P. S. (1992). Huntington disease and the abuse of genetics. American journal of human genetics, 50(3), 460–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, H., Lim, P. J., Karbowski, M., & Monteiro, M. J. (2009). Effects of overexpression of huntingtin proteins on mitochondrial integrity. Human molecular genetics, 18(4), 737–752. https://doi.org/10.1093/hmg/ddn404.

    Article  CAS  PubMed  Google Scholar 

  48. Majumder, P., Choudhury, A., Banerjee, M., Lahiri, A., & Bhattacharyya, N. P. (2007). Interactions of HIPPI, a molecular partner of Huntingtin interacting protein HIP1, with the specific motif present at the putative promoter sequence of the caspase-1, caspase-8 and caspase-10 genes. The FEBS Journal, 274(15), 3886–3899. https://doi.org/10.1111/j.1742-4658.2007.05922.x.

    Article  CAS  PubMed  Google Scholar 

  49. Metzler, M., Li, B., Gan, L., Georgiou, J., Gutekunst, C. A., Wang, Y., et al. (2003). Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. The EMBO Journal, 22(13), 3254–3266. https://doi.org/10.1038/sj.embor.7400250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Landles, C., & Bates, G. P. (2004). Huntingtin and the molecular pathogenesis of Huntington’s disease: fourth in molecular medicine review series. EMBO reports, 5(10), 958–963. https://doi.org/10.1038/sj.embor.7400250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sathasivam, K., Neueder, A., Gipson, T. A., Landles, C., Benjamin, A. C., Bondulich, M. K., et al. (2013). Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proceedings of the National Academy of Sciences, 110(6), 2366–2370. https://doi.org/10.1073/pnas.1221891110.

    Article  Google Scholar 

  52. Ardekani, A. M., & Naeini, M. M. (2010). The role of microRNAs in human diseases. Avicenna journal of medical biotechnology, 2(4), 161–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sinha, M., Mukhopadhyay, S., & Bhattacharyya, N. P. (2012). Mechanism (s) of alteration of micro RNA expressions in Huntington’s disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. Neuromolecular medicine, 14(4), 221–243. https://doi.org/10.1007/s12017-012-8183-0.

    Article  CAS  PubMed  Google Scholar 

  54. Aviner, R., Geiger, T., & Elroy-Stein, O. (2014). Genome-wide identification and quantification of protein synthesis in cultured cells and whole tissues by puromycin-associated nascent chain proteomics (PUNCH-P). Nature protocols, 9(4), 751–760. https://doi.org/10.1038/nprot.2014.051.

    Article  CAS  PubMed  Google Scholar 

  55. Malkani, P., Raj, P., & Singh, A. (2018). A clinical review on Huntington disease. Global Journal of Pharmacy & Pharmaceutical Sciences, 6(4), 88–92. https://doi.org/10.19080/GJPPS.2018.06.555693.

    Article  Google Scholar 

  56. Ross, C. A., & Tabrizi, S. J. (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. The Lancet Neurology, 10(1), 83–98. https://doi.org/10.1016/S1474-4422(10)70245-3.

    Article  CAS  PubMed  Google Scholar 

  57. Bates, G. (2003). Huntingtin aggregation and toxicity in Huntington’s disease. The Lancet, 361(9369), 1642–1644. https://doi.org/10.1016/S0140-6736(03)13304-1.

    Article  CAS  Google Scholar 

  58. Landles, C., Sathasivam, K., Weiss, A., Woodman, B., Moffitt, H., Finkbeiner, S., et al. (2010). Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. Journal of Biological Chemistry, 285(12), 8808–8823. https://doi.org/10.1074/jbc.M109.075028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Landles, C., & Bates, G. P. (2004). Huntingtin and the molecular pathogenesis of Huntington’s disease: fourth in molecular medicine review series. EMBO reports, 5(10), 958–963. https://doi.org/10.1038/sj.embor.7400250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Illarioshkin, S. N., Klyushnikov, S. A., Vigont, V. A., Seliverstov, Y. A., & Kaznacheyeva, E. V. (2018). Molecular pathogenesis in Huntington’s disease. Biochemistry (Moscow), 83(9), 1030–1039. https://doi.org/10.1134/S0006297918090043.

    Article  CAS  Google Scholar 

  61. DiFiglia, M., Sena-Esteves, M., Chase, K., Sapp, E., Pfister, E., Sass, M., et al. (2007). Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proceedings of the National Academy of Sciences, 104(43), 17204–17209. https://doi.org/10.1073/pnas.0708285104.

    Article  Google Scholar 

  62. Björkqvist, M., Wild, E. J., Thiele, J., Silvestroni, A., Andre, R., Lahiri, N., et al. (2008). A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. The Journal of experimental medicine, 205(8), 1869–1877.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ross, C. A., & Cleveland, D. W. (2006). Intercellular miscommunication in polyglutamine pathogenesis. Nature neuroscience, 9(10), 1205–1206. https://doi.org/10.1038/nn1006-1205.

    Article  CAS  PubMed  Google Scholar 

  64. Schwarcz, R., Guidetti, P., Sathyasaikumar, K. V., & Muchowski, P. J. (2010). Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Progress in neurobiology, 90(2), 230–245. https://doi.org/10.1016/j.pneurobio.2009.04.005.

    Article  CAS  PubMed  Google Scholar 

  65. Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S. C., & Muchowski, P. J. (2005). A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nature genetics, 37(5), 526–531. https://doi.org/10.1038/ng1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Evans, S. J., Douglas, I., Rawlins, M. D., Wexler, N. S., Tabrizi, S. J., & Smeeth, L. (2013). Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. Journal of Neurology, Neurosurgery & Psychiatry, 84(10), 1156–1160. https://doi.org/10.1136/jnnp-2012-304636.

    Article  Google Scholar 

  67. Plotkin, J. L., & Surmeier, D. J. (2015). Corticostriatal synaptic adaptations in Huntington's disease. Current opinion in neurobiology, 33, 53–62. https://doi.org/10.1016/j.conb.2015.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dorsey, E. R., Beck, C. A., Darwin, K., Nichols, P., Brocht, A. F., Biglan, K. M., & Shoulson, I. (2013). Natural history of Huntington disease. JAMA neurology, 70(12), 1520–1530. https://doi.org/10.1001/jamaneurol.2013.4408.

    Article  PubMed  Google Scholar 

  69. Rosenblatt, A., Liang, K. Y., Zhou, H., Abbott, M. H., Gourley, L. M., Margolis, R. L., et al. (2006). The association of CAG repeat length with clinical progression in Huntington disease. Neurology, 66(7), 1016–1020. https://doi.org/10.1212/01.wnl.0000204230.16619.d9.

    Article  CAS  PubMed  Google Scholar 

  70. Tabrizi, S. J., Scahill, R. I., Owen, G., Durr, A., Leavitt, B. R., Roos, R. A., et al. (2013). Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. The Lancet Neurology, 12(7), 637–649. https://doi.org/10.1016/S1474-4422(13)70088-7.

    Article  PubMed  Google Scholar 

  71. Hogarth, P., Kayson, E., Kieburtz, K., Marder, K., Oakes, D., Rosas, D., et al. (2005). Interrater agreement in the assessment of motor manifestations of Huntington’s disease. Movement disorders, 20(3), 293–297. https://doi.org/10.1002/mds.20332.

    Article  PubMed  Google Scholar 

  72. Sampaio, C., Borowsky, B., & Reilmann, R. (2014). Clinical trials in Huntington’s disease: interventions in early clinical development and newer methodological approaches. Movement Disorders, 29(11), 1419–1428. https://doi.org/10.1002/mds.26021.

    Article  PubMed  Google Scholar 

  73. Papoutsi, M., Labuschagne, I., Tabrizi, S. J., & Stout, J. C. (2014). The cognitive burden in Huntington’s disease: pathology, phenotype, and mechanisms of compensation. Movement Disorders, 29(5), 673–683. https://doi.org/10.1002/mds.25864.

    Article  PubMed  Google Scholar 

  74. Stout, J. C., Jones, R., Labuschagne, I., O'Regan, A. M., Say, M. J., Dumas, E. M., et al. (2012). Evaluation of longitudinal 12 and 24 month cognitive outcomes in premanifest and early Huntington's disease. Journal of Neurology, Neurosurgery & Psychiatry, 83(7), 687–694. https://doi.org/10.1136/jnnp-2011-301940.

    Article  Google Scholar 

  75. Ross, C. A., Aylward, E. H., Wild, E. J., Langbehn, D. R., Long, J. D., Warner, J. H., et al. (2014). Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, 10(4), 204–216. https://doi.org/10.1038/nrneurol.2014.24.

    Article  CAS  PubMed  Google Scholar 

  76. Lee, J. M., Wheeler, V. C., Chao, M. J., Vonsattel, J. P. G., Pinto, R. M., Lucente, D., et al. (2015). Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell, 162(3), 516–526. https://doi.org/10.1016/j.cell.2015.07.003.

    Article  CAS  Google Scholar 

  77. McColgan, P., & Tabrizi, S. J. (2018). Huntington’s disease: a clinical review. European journal of neurology, 25(1), 24–34. https://doi.org/10.1111/ene.13413.

    Article  CAS  PubMed  Google Scholar 

  78. Link, P. A., Baer, M. R., James, S. R., Jones, D. A., & Karpf, A. R. (2008). p53-Inducible ribonucleotide reductase (p53R2/RRM2B) is a DNA hypomethylation–independent decitabine gene target that correlates with clinical response in myelodysplastic syndrome/acute myelogenous leukemia. Cancer research, 68(22), 9358–9366. https://doi.org/10.1158/0008-5472.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Flower, M., Lomeikaite, V., Ciosi, M., Cumming, S., Morales, F., Lo, K., et al. (2019). MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1. Brain, 142(7), 1876–1886. https://doi.org/10.1093/brain/awz115.

    Article  PubMed Central  Google Scholar 

  80. Travessa, A., Rodrigues, F., Mestre, T., Sampaio, C., & Ferreira, J. (2016). Fifteen years of clinical trials in Huntington’s disease: too many clinical trial failures: 1135. Movement Disorders, 31.

  81. Leoni, V., Mariotti, C., Tabrizi, S. J., Valenza, M., Wild, E. J., Henley, S. M., et al. (2008). Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain, 131(11), 2851–2859. https://doi.org/10.1093/brain/awn212.

    Article  PubMed  Google Scholar 

  82. Hu, Y., Chopra, V., Chopra, R., Locascio, J. J., Liao, Z., Ding, H., et al. (2011). Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proceedings of the National Academy of Sciences, 108(41), 17141–17146. https://doi.org/10.1073/pnas.1104409108.

    Article  Google Scholar 

Download references

Acknowledgements

The author sincerely acknowledges University of Engineering and management.

Author information

Authors and Affiliations

Authors

Contributions

A. Jana, S. Dhar, S. Ghosh and Dr. P. Talukder contributed equally; Dr. P. Talukder prepared the manuscript. All the authors contributed equally.

Corresponding author

Correspondence to Pratik Talukder.

Ethics declarations

Ethics Approval

As this is a review article, there is no need of any ethical approval.

Consent to Participate

Not applicable as this is a review article.

Consent for Publication

The authors give the consent for publication.

Conflict of Interest/Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukder, P., Jana, A., Dhar, S. et al. Huntington’s Chorea—a Rare Neurodegenerative Autosomal Dominant Disease: Insight into Molecular Genetics, Prognosis and Diagnosis. Appl Biochem Biotechnol 193, 2634–2648 (2021). https://doi.org/10.1007/s12010-021-03523-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03523-x

Keywords

Navigation