Skip to main content
Log in

k-Hankel Gabor Transform and Its Applications to the Theory of Localization Operators

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

We introduce and study the k-Hankel Gabor transform. We investigate the localization operators for this transform. In particular, we study their trace class properties and we prove that they belong to the Schatten-von Neumann class. We also study the eigenvalues and eigenfunctions of the time-frequency localization operator. Finally we give some results on the spectrograms for the k-Hankel Gabor transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Abreu, K. Gröchenig and J. L. Romero, On accumulated spectrograms, Trans. Amer. Math. Soc., 368 (2016), 3629–3649.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. D. Abreu, J. Pereira, and J. L. Romero, Sharp rates of convergence for accumulated spectrograms, Inverse Problems, 33 (2017), 115008.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Atakishiyev and K. B. Wolf, Fractional Fourier-Kravchuk transform, J. Opt. Soc. Amer. A, 14 (1997), 1467–1477.

    Article  MathSciNet  Google Scholar 

  4. C. Baccar, N. B. Hamadi and H. Herch, Time-frequency analysis of localization operators associated to the windowed Hankel transform, Integral Transforms Spec. Funct., 27, (2016), 245–258.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Ben Saïd, Strichartz estimates for Schrödinger-Laguerre operators, Semigroup Forum, 90 (2015), 251–269.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Ben Saïd, A product formula and a convolution structure for a k-Hankel transform on ℝ, J. Math. Anal. Appl., 463 (2018), 1132–1146.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Ben Saïd, T. Kobayashi and B. Ørsted, Laguerre semigroup and k-Hankel operators, Compos. Math., 148 (2012), 1265–1336.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Boggiatto and E. Cordero. Anti-Wick quantization with symbols in Lp spaces, Proc. Amer. Math. Soc., 130 (2002), 2679–2685.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Brackx, N. De Schepper and F. Sommen, The Clifford-Fourier transform, J. Fourier Anal. Appl., 11 (2005), 669–681.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Constales, H. De Bie and P. Lian, Explicit formulas for the Dunkl dihedral kernel and the (k, a)-generalized Fourier kernel, J. Math. Anal. Appl., 460 (2018), 900–926.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Cordero and K. Gröchenig, Time-frequency analysis of localization operators, J. Funct. Anal., 205 (2003), 107–131.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inf. Theory, 34 (1988), 605–612.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inf. Theor, 36 (1990), 961–1005.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. De Bie, Clifford algebras, Fourier transforms, and quantum mechanics, Math. Methods Appl. Sci., 35 (2012), 2198–2228.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. De Bie, The kernel of the evenly deformed Fourier transform, Integral Transforms Spec. Funct., 24 (2013), 1000–1008.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. De Bie, B. Ørsted, P. Somberg and V. Souček, Dunkl operators and a family of realizations of osp(1∣2), Trans. Amer. Math. Soc., 364 (2012), 3875–3902.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. De Bie and Y. Xu, On the Clifford-Fourier transform, Int. Math. Res. Not. IMRN, 22 (2011), 5123–5163.

    MathSciNet  MATH  Google Scholar 

  18. F. De Mari, H. Feichtinger and K. Nowak, Uniform eigenvalue estimates for time-frequency localization operators, J. London Math. Soc., 65 (2002), 720–732.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. De Mari and K. Nowak, Localization type Berezin-Toeplitz operators on bounded symmetric domains, J. Geom. Anal., 12 (2002), 9–27.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., 311 (1989), 167–183.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. F. Dunkl, Hankel transforms associated to finite reflection groups, in: Proceedings of the Special Session on Hypergeometric Functions on Domains of Positivity, Jack Polynomials and Applications (Tampa, FL, 1991), Contemp. Math., vol. 138, Amer. Math. Soc. (Providence, RI, 1992), pp. 123–138.

    MATH  Google Scholar 

  22. D. Gabor, Theory of communication. part 1: The analysis of information, J. Inst. Elec. Engrs. Part III, 93 (1946), 429–441.

    Google Scholar 

  23. S. Ghobber, Phase space localized functions in the Dunkl setting, J. Pseudo-Differ. Oper. Appl., 7 (2016), 571–593.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Gorbachev, V. Ivanov and S. Tikhonov, Pitt’s inequalities and uncertainty principle for generalized Fourier transform, Int. Math. Res. Notices, 2016 (2016), 7179–7200.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Gröchenig, Foundations of Time-Frequency Analysis, Springer Science & Business Media (2001).

  26. R. Howe, The oscillator semigroup, in: The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987), Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc. (Providence, RI, 1988), pp. 61–132.

    MATH  Google Scholar 

  27. R. Howe and E. C. Tan, Nonabelian Harmonic Analysis, Universitext, Springer-Verlag (New York, 1992).

    Google Scholar 

  28. M. Hutnikova and O. Hutnik, An alternative description of Gabor spaces and Gabor-Toeplitz operators, Rep. Math. Phys., 66 (2010), 237–250.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. I. Jafarov, N. I. Stoilova and J. Van der Jeugt, The su(2)k Hahn oscillator and a discrete Hahn-Fourier transform, J. Phys. A: Math. Theor., 44 (2011), 355205, 18 pp.

    Article  MATH  Google Scholar 

  30. T-R. Johansen, Weighted inequalities and uncertainty principles for the (k, a)-generalized Fourier transform, Int. J. Math., 27 (2016), 1650019.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Kobayashi and G. Mano, The Schrödinger model for the minimal representation of the indefinite orthogonal group O(p, q), Mem. Amer. Math. Soc., 212 (2011), no. 1000, 132 pp.

  32. L. Liu, A trace class operator inequality, J. Math. Anal. Appl., 328 (2007), 1484–1486.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Mejjaoli, Practical inversion formulas for the Dunkl-Gabor transform on ℝd, Integ. Transf. Special Funct., 23 (2012), 875–890.

    Article  MATH  Google Scholar 

  34. H. Mejjaoli, Spectral theorems associated with the (k, a)-generalized wavelet multipliers, J. Pseudo-Differ. Oper. Appl., 9 (2018), 735–762.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Mejjaoli, (k, a)-generalized wavelet transform and applications, J. Pseudo-Differ. Oper. Appl., 11 (2020), 55–92.

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Mejjaoli and N. Sraieb, Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous Gabor transform, Mediterr. J. Math., 5 (2008), 443–466.

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Mejjaoli and K. Trimèche, k-Hankel two-wavelet theory and localization operators, Integ. Transf. Special Funct., 31 (2020), 620–644.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Ramanathan and P. Topiwala, Time-frequency localization via the Weyl correspondence, SIAM J. Math. Anal., 24 (1993), 1378–1393.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Ramanathan and P. Topiwala, Time-frequency localization and the spectrogram, Appl. Comput. Harmon. Anal., 1 (1994), 209–215.

    Article  MathSciNet  MATH  Google Scholar 

  40. F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co. (New York, 1995).

    MATH  Google Scholar 

  41. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956), 482–492.

    Article  MathSciNet  MATH  Google Scholar 

  42. N. L. Vasilevski, Commutative Algebras of Toeplitz Operators on the Bergman Space, Operator Theory: Advances and Applications, vol. 185, Birkhäuser (Basel, 2008).

    MATH  Google Scholar 

  43. M. W. Wong, Wavelet transforms and localization operators, Operator Theory: Advances and Applications, vol. 136, Birkhäuser (Basel, 2002).

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to the referees for providing constructive comments and helps in improving the contents of this article. The first author thanks professors K. Trimèche and M. W. Wong for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mejjaoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejjaoli, H., Ben Saïd, S. k-Hankel Gabor Transform and Its Applications to the Theory of Localization Operators. Anal Math 47, 629–663 (2021). https://doi.org/10.1007/s10476-021-0091-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-021-0091-9

Key words and phrases

Mathematics Subject Classification

Navigation