Skip to main content
Log in

Band-gap Properties of Elastic Sandwich Metamaterial Plates with Composite Periodic Rod Core

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A novel elastic sandwich metamaterial plate with composite periodic rod core is designed, and the frequency band-gap characteristics are numerically and experimentally investigated. The finite element and spectral element hybrid method (FE-SEHM) is developed to obtain the dynamic stiffness matrix of the sandwich metamaterial plate. The frequency response curves of the plate structure under the harmonic excitation are calculated using the presented numerical method and validated by the vibration experiment. By comparing with the frequency response curves of sandwich metamaterial plate with pure elastic rod core, improved band-gap properties are achieved from the designed metamaterial plate with composite periodic rod core. The elastic metamaterial plate with composite periodic rod core can generate more band-gaps, so it can suppress the vibration and elastic wave propagation in the structure more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wu Z, Liu W, Li F, Zhang C. Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators. Mech. Syst. Signal Process. 2019;134:106357.

    Article  Google Scholar 

  2. He ZH, Wang YZ, Wang YS. Sound transmission comparisons of active elastic wave metamaterial immersed in external mean flow. Acta Mechanica Solida Sinica. 2021;. https://doi.org/10.1007/s10338-021-00233-z.

    Article  Google Scholar 

  3. Zhao P, Zhang K, Deng Z. Elastic wave propagation in lattice metamaterials with Koch fractal. Acta Mechanica Solida Sinica. 2020;33(5):600–11.

    Article  Google Scholar 

  4. Lin Q, Zhou J, Pan H, Xu D, Wen G. Numerical and experimental investigations on tunable low-frequency locally resonant metamaterials. Acta Mechanica Solida Sinica. 2021;. https://doi.org/10.1007/s10338-021-00220-4.

    Article  Google Scholar 

  5. Muhammad Lim C W, Vyas NS. A novel application of multi-resonant dissipative elastic metahousing for bearings. Acta Mechanica Solida Sinica. 2021;. https://doi.org/10.1007/s10338-021-00221-3.

    Article  Google Scholar 

  6. Muhammad S, Wang S, Li F, Zhang C. Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms. J. Vibr. Control. 2020;26:1309–18.

    Article  MathSciNet  Google Scholar 

  7. Ren T, Liu C, Li F, Zhang C. Active tuning of the vibration band-gap characteristics of periodic laminated composite metamaterial beams. J. Intell. Mater. Syst. Struct. 2020;31:843–59.

    Article  Google Scholar 

  8. Li Y, Zhang Y, Xie S. A lightweight multilayer honeycomb membrane-type acoustic metamaterial. Appl. Acoust. 2020;168:107427.

    Article  Google Scholar 

  9. An X, Lai C, Fan H, Zhang C. 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation. Int. J. Solids Struct. 2020;191–192:293–306.

    Article  Google Scholar 

  10. Naify CJ, Rogers JS, Guild MD, Rohde CA, Orris GJ. Evaluation of the resolution of a metamaterial acoustic leaky wave antenna. J. Acoust. Soc. Am. 2016;139:3250–7.

    Article  Google Scholar 

  11. Leblanc A, Lavie A. Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation. J. Acoust. Soc. Am. 2017;141(6):EL538–42.

    Article  Google Scholar 

  12. Liu J, Li L, Xia B, Man X. Fractal labyrinthine acoustic metamaterial in planar lattices. Int. J. Solids Struct. 2018;132–133:20–30.

    Article  Google Scholar 

  13. Tang Y, Ren S, Meng H, Xin F, Huang L, Chen T, Zhang C, Lu T. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound. Sci. Rep. 2017;7:43340.

    Article  Google Scholar 

  14. Bennetts LG, Peter MA, Dylejko P, Skvotsov A. Effective properties of acoustic metamaterial chains with low-frequency bandgaps controlled by the geometry of lightweight mass-link attachments. J. Sound Vibr. 2019;456:1–12.

    Article  Google Scholar 

  15. Wang X, Chen Y, Zhou G, Chen T, Ma F. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation. J. Sound Vibr. 2019;459:114867.

    Article  Google Scholar 

  16. Wang K, Zhou J, Wang Q, Ouyang H. Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation. Appl. Phys. Lett. 2019;114(25):251902.

    Article  Google Scholar 

  17. Meng F, Zhang K, Zhang F, Zhang C. Reconfigurable subwavelength waveguide based on magnetic metamaterial. Appl. Phys. A. 2011;102(3):509–15.

    Article  Google Scholar 

  18. Houck AA, Brock JB, Chuang IL. Experimental observations of a left-handed material that obeys Snell’s law. Phys. Rev. Lett. 2003;90(13):137401.

    Article  Google Scholar 

  19. Baena JD, Marques R, Medina F, Martel J. Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B. 2004;69(1):014402.

    Article  Google Scholar 

  20. Nobrega ED, Gautier F, Pelat A, Dos Santos JMC. Vibration band gaps for elastic metamaterial rods using wave finite element method. Mech. Syst. Signal Process. 2016;79:192–202.

    Article  Google Scholar 

  21. Wen S, Xiong Y, Hao S, Li F, Zhang C. Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections. Int. J. Mech. Sc. 2020;166:105229.

    Article  Google Scholar 

  22. Hao S, Wu Z, Li F, Zhang C. Numerical and experimental investigations on the band-gap characteristics of metamaterial multi-span beams. Phys. Lett. A. 2019;383:126029.

    Article  Google Scholar 

  23. Wang K, Zhou J, Ouyang H, Cheng L, Xu D. A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. Int. J. Mech. Sci. 2020;176:105548.

    Article  Google Scholar 

  24. Wang W, Bonello B, Djafari-Rouhani B, Pennec Y, Zhao J. Elastic stubbed metamaterial plate with torsional resonances. Ultrasonics. 2020;106:106142.

    Article  Google Scholar 

  25. Zhou Y, Wei P, Jiao F. Dispersion of elastic waves in a micropolar metamaterial plate with periodical arranged resonators. Appl. Math. Model. 2020;87:468–87.

    Article  MathSciNet  Google Scholar 

  26. He ZC, Li E, Wang G, Li GY, Xia Z. Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mechanica. 2016;227(10):3015–30.

    Article  MathSciNet  Google Scholar 

  27. Alberdi R, Zhang G, Khandelwal K. An isogeometric approach for analysis of phononic crystals and elastic metamaterials with complex geometries. Comput. Mech. 2018;62(3):285–307.

    Article  MathSciNet  Google Scholar 

  28. Solaroli G, Gu Z, Baz A, Ruzzene M. Wave propagation in periodic stiffened shells: spectral finite element modeling and experiments. J. Vibr. Control. 2003;9(9):1057–81.

    Article  Google Scholar 

  29. Asiri S, Baz A, Pines D. Periodic struts for gearbox support system. J. Vibr. Control. 2005;11(6):709–21.

    Article  Google Scholar 

  30. Wu Z, Li F, Zhang C. Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method. Journal of Sound and Vibration. 2018;421:246–60.

    Article  Google Scholar 

  31. Wu ZJ, Li FM, Zhang C. Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vibr. 2015;341:162–73.

    Article  Google Scholar 

  32. Wu ZJ, Li FM. Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. J. Vibr. Control. 2016;22(3):710–21.

    Article  MathSciNet  Google Scholar 

  33. Linzhongyang E, Wu Z, Zou G, Li F, Zhang C, Sun A, Du Q. Band-gap characteristics of elastic metamaterial plate with axial rod core by the finite element and spectral element hybrid method. Mech Adv Mater Struct. 2021;. https://doi.org/10.1080/15376494.2020.1863531.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 11761131006) and the Research Team Project of Heilongjiang Natural Science Foundation under Grant No. TD2020A001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

E, L., Chen, Z., Li, F. et al. Band-gap Properties of Elastic Sandwich Metamaterial Plates with Composite Periodic Rod Core. Acta Mech. Solida Sin. 35, 51–62 (2022). https://doi.org/10.1007/s10338-021-00247-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00247-7

Keywords

Navigation