Skip to main content
Log in

Kinetic study of the effect of amino acids on methane (95%)—propane (5%) hydrate formation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The motivation for this study is the potential of environmental friendly amino acids such as alanine, histidine, phenylalanine and valine to be examined as inhibitors on methane (95%)—propane (5%) hydrate formation together with the hydrodynamic examination of three different flows in hydrate formation process. The outcomes indicated that valine and alanine behave as promoters while histidine and phenylalanine behave as inhibitors. From hydrodynamic perception radial flow shows less induction time values and better rate of hydrate formation due to better gas liquid contact compared to mixed flow experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ripmeester JA, Tse JS, Ratcliffe CI, Powell BM (1987) A new clathrates hydrate structure. Nature 325:135–136

    Article  CAS  Google Scholar 

  2. Sum AK, Burruss RC, Sloan ED (1997) Measurement of clathrate hydrates via Raman spectroscopy. J Phys Chem B 101:7371–7377

    Article  CAS  Google Scholar 

  3. Merey S, Longinos SN (2018) Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea. J Petrol Sci Eng 168:81–97. https://doi.org/10.1016/j.petrol.2018.05.014

    Article  CAS  Google Scholar 

  4. Shahnazar S, Hasan N (2014) Gas hydrate formation condition: review on experimental and modeling approaches. Fluid Phase Equilib 379:72–85

    Article  CAS  Google Scholar 

  5. Ansari F, Soofivand F, Salavati-Niasari M (2015) Utilizing maleic acid as a novel fuel for synthesis of PbFe12O19 nanoceramics via sol–gel auto-combustion route. Mater Charact 103:11–17

    Article  CAS  Google Scholar 

  6. Carson DB, Katz DL (1942) Natural gas hydrates. Trans AIME 146:150–158

    Article  Google Scholar 

  7. Kelland MA, Reyes FT, Trovik KW (2013) Tris (diakyloamino) cyclopropenium chlorides: tetrahydrofuran hydrate crystal growth inhibition and synergism with polyvinylcaprolactam as gas hydrate kinetic inhibitor. Chem Eng Sci 93:423–428

    Article  CAS  Google Scholar 

  8. Sloan ED, Koh C (2007) Clathrate hydrates of natural gases, 3rd edn. Taylor & Francis, London

    Book  Google Scholar 

  9. Cha M, Shin K, Kim J, Chang D, Seo Y, Lee H, Kang SP (2013) Thermodynamic and kinetic hydrate inhibition performance of aqueous ethylene glycol solutions for natural gas. Chem Eng Sci 99:184–190

    Article  CAS  Google Scholar 

  10. Koh CA, Sloan ED, Sum AK, Wu DT (2011) Fundamentals and applications of gas hydrates. Annu Rev Chem Biomol Eng 2:237–257

    Article  CAS  Google Scholar 

  11. Broni-Bediako E, Amorin R, Bavoh CB (2017) Gas hydrates formation phase boundary behaviour of synthetic natural gas system of the keta basin of Ghana. Open Pet Eng Journal 10:64–72

    Article  CAS  Google Scholar 

  12. Kelland MW, Ke W (2016) Kinetic hydrate inhibitor studies for gas hydrate systems: a review of experimental equipment and test methods. Energy Fuels 30:10015–10028

    Article  Google Scholar 

  13. Feng Y, Hu S, Liu X, Lo G, Zhu G (2014) Prevention and disposal technologies of gas hydartes in high sulfur gas reservoirs containing CO2. J Nat Gas Sci Eng 19:344–349

    Article  CAS  Google Scholar 

  14. Ding T, Liu Y (2014) Simulations and analysis of hydrate formation during CO2 injection into cold saline aquifers. Energy Proced 63:3030–3040

    Article  CAS  Google Scholar 

  15. Lim LV, Lloren AV, Lamorena RB (2014) The effect of urea in the nucleation process of CO2 clatharate hydrates. J Mol Liq 194:245–250

    Article  CAS  Google Scholar 

  16. Chun LK, Jaafar A (2013) Ionic liquids as low dosage hydrate inhibitor for flow assurance in pipeline. Asian J Sci Res 6(2):374–380

    Article  CAS  Google Scholar 

  17. Sa JH, Kwak JH, Lee BR, Park DH, Han K, Lee KH (2013) Hydrophobic amino acids as a new class of kinetic inhibitors for gas formation. Sci Rep 3:2428

    Article  Google Scholar 

  18. Carey FA, Giuliano RM (2010) Organic chemistry, 18th edn. McGraw-Hill, New York

    Google Scholar 

  19. Naeiji P, Arjomandi A, Varaminian F (2014) Amino acids as kinetic inhibitors for tetrahydrofuran hydrate formation: experimental study and kinetic modeling. J Nat Gas Sci Eng 21:64–70

    Article  CAS  Google Scholar 

  20. Bavoh CB, Nashed O, Khan MS, Partoon B, Lal B, Sharif AM (2018) The impact of amino acids on methane hydrate phase boundary and formation kinetics. J Chem Thermodyn 117:48–53

    Article  CAS  Google Scholar 

  21. Longinos SN, Parlaktuna M (2021) Are the amino acids inhibitors or promoters on methane (95%)—propane (5%) hydrate formation? Reac Kinet Mech Cat 132(2):795–809. https://doi.org/10.1007/s11144-021-01959-0

    Article  CAS  Google Scholar 

  22. Roosta H, Dashti A, Mazloumi SH, Varaminian F (2018) The dual effect of amino acids on the nucleation and growth rate of gas hydrate in ethane+ water, methane+ propane+ water and methane+ THF+ water systems. Fuel 212:151–161

    Article  CAS  Google Scholar 

  23. Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42(11):2647–2658

    Article  CAS  Google Scholar 

  24. Linga P, Daraboina N, Ripmeester JA, Englezos P (2012) Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel. Chem Eng Sci 68(1):617–623

    Article  CAS  Google Scholar 

  25. Zhao J, Liu Y, Yang L, Zhang L, Song Y (2021) Organics-coated nanoclays further promote hydrate formation kinetics. J Phys Chem Lett 12(13):3464–3467

    Article  CAS  Google Scholar 

  26. Liang H, Yang L, Song Y, Zhao J (2020) New approach for determining the reaction rate constant of hydrate formation via X-ray computed tomography. J Phys Chem C 125(1):42–48

    Article  Google Scholar 

  27. Sun T, Davies PL, Walker VK (2015) Article structural basis for the inhibition of gas hydrates by α-helical antifreeze proteins. Biophys J 109:1698–1705

    Article  CAS  Google Scholar 

  28. Bavoh BC, Partoon B, Lal B, Gonfa G, Khor FS, Sharif AM (2017) Inhibition effect of amino acids on carbon dioxide hydrate. J Chem Eng Sci 171:331–339

    Article  CAS  Google Scholar 

  29. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:230–235

    Article  Google Scholar 

  30. Roosta H, Dashti A, Mazloumi H, Varaminian F (2016) Inhibition properties of new amino acids for prevention of hydrate formation in carbon dioxide water system: experimental ans modelling investigations. J Mol Liq 215:656–663

    Article  CAS  Google Scholar 

  31. Sa JH, Lee BR, Park DH, Han K, Chun HD, Lee KH (2011) Amino acids as natural inhibitors for hydrate formation. Environ Sci Technol 45(13):5885–5891

    Article  CAS  Google Scholar 

  32. Longinos SN, Parlaktuna M (2021) The effect of experimental conditions on methane hydrate formation by the use of single and dual impellers. Reac Kinet Mech Cat 132(2):771–794. https://doi.org/10.1007/s11144-021-01937-6

    Article  CAS  Google Scholar 

  33. Longinos SN, Parlaktuna M (2021) Kinetic analysis of methane—propane hydrate formation by the use of different impellers. ASC Omega 6:1636–1646. https://doi.org/10.1021/acsomega.0c05615

    Article  CAS  Google Scholar 

  34. Longinos SN, Parlaktuna M (2020) The effect of experimental conditions on methane (95%)–propane (5%) hydrate formation. Energies 13(24):6710. https://doi.org/10.3390/en13246710

    Article  CAS  Google Scholar 

  35. Douieb S, Fradette L, Bertrand F, Haunt B (2015) Impact of the fluid flow conditions on the formation rate of carbon dioxide hydrates in as semi-batch stirred tank reactor. AIChE J 61(12):4387–4401

    Article  CAS  Google Scholar 

  36. Longinos SN, Parlaktuna M (2021) Kinetic analysis of dual impellers on methane hydrate formation. Int J Chem React Eng 19(2):155–165. https://doi.org/10.1515/ijcre-2020-0231

    Article  Google Scholar 

  37. Longinos SN, Parlaktuna M (2021) Kinetic analysis of CO2 hydrate formation by the use of different impellers. Reac Kinet Mech Cat 133(1):85–100. https://doi.org/10.1007/s11144-021-01968-z

    Article  CAS  Google Scholar 

  38. Longinos SN, Parlaktuna M (2021) Examination of behavior of lysine on methane (95%)—propane (5%) hydrate formation by the use of different impellers. J Pet Explor Prod Technol. https://doi.org/10.1007/s13202-021-01146-w

    Article  Google Scholar 

  39. Longinos SN, Parlaktuna M (2021) Examination of methane hydrate formation by the use of dual impeller combinations. React Kinet Mech Catal. https://doi.org/10.1007/s11144-021-02017-5

    Article  Google Scholar 

  40. Longinos SN, Parlaktuna M (2021) Kinetic analysis of arginine, glycine and valine on methane (95%) – propane (5%) hydrate formation. React Kinet Mech Catal. https://doi.org/10.1007/s11144-021-02018-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Nik. Longinos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longinos, S.N., Parlaktuna, M. Kinetic study of the effect of amino acids on methane (95%)—propane (5%) hydrate formation. Reac Kinet Mech Cat 133, 753–763 (2021). https://doi.org/10.1007/s11144-021-02023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02023-7

Keywords

Navigation