Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circulation-driven variability of Atlantic anthropogenic carbon transports and uptake

Abstract

The ocean absorbs approximately a quarter of the carbon dioxide currently released to the atmosphere by human activities (Canth). A disproportionately large fraction accumulates in the North Atlantic due to the combined effects of transport by the Atlantic Meridional Overturning Circulation (AMOC) and air–sea exchange. However, discrepancies exist between modelled and observed estimates of the air–sea exchange due to unresolved ocean transport variability. Here we quantify the strength and variability of Canth transports across 26.5° N in the North Atlantic between 2004 and 2012 using circulation measurements from the RAPID mooring array and hydrographic observations. Over this period, decreasing circulation strength tended to decrease northward Canth transport, while increasing Canth concentrations (preferentially in the upper limb of the overturning circulation) tended to increase northward Canth transport. These two processes compensated each other over the 8.5-year period. While ocean transport and air–sea Canth fluxes are approximately equal in magnitude, the increasing accumulation rate of Canth in the North Atlantic combined with a stable ocean transport supply means we infer a growing contribution from air–sea Canth fluxes over the period. North Atlantic Canth accumulation is thus sensitive to AMOC strength, but growing atmospheric Canth uptake continues to significantly impact Canth transports.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AMOC observing system mooring array at 26.5° N with 2010 Canth distribution.
Fig. 2: Canth transports across 26.5° N in the subtropical NA.
Fig. 3: AMOC–Canth transport co-variability and non-AMOC variability.
Fig. 4: Impact of increasing Canth concentrations on ocean Canth transport.

Similar content being viewed by others

Data availability

The carbon transport data that support the findings of this study63 are available from the British Oceanographic Data Centre at http://doi.org/10/fn4j. Raw hydrographic datasets are at https://cchdo.ucsd.edu/. Final adjusted hydrographic datasets are available from GLODAP (https://www.glodap.info/). AMOC estimates are available from the RAPID programme website (https://www.rapid.ac.uk/). Atmospheric CO2 is available from the GLOBALVIEW-CO2 web resources (GLOBALVIEW-CO2; Cooperative Atmospheric Data Integration Project—Carbon Dioxide; NOAA ESRL, Boulder, Colorado; Also available on the Internet via anonymous FTP to ftp.cmdl.noaa.gov, path: ccg/co2/GLOBALVIEW). Sea surface pCO2 observations are from the Surface Ocean Carbon Dioxide Atlas SOCAT: https://www.socat.info/. NCEP/NCAR temperature and sea-level pressure fields are available from https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html. Source data are provided with this paper.

References

  1. Sarmiento, J. L. & Gruber, N. in Ocean Biogeochemical Dynamics 392–457 (Princeton Univ. Press, 2006).

  2. Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint atmosphere–ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Glob. Biogeochem. Cycles 21, GB1019 (2007).

    Google Scholar 

  3. Resplandy, L. et al. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018).

    Article  Google Scholar 

  4. Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    Article  Google Scholar 

  5. Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).

    Article  Google Scholar 

  6. Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Article  Google Scholar 

  7. Broecker, W. S. & Peng, T. H. Interhemispheric transport of carbon dioxide by ocean circulation. Nature 356, 587–589 (1992).

    Article  Google Scholar 

  8. Landschützer, P., Gruber, N. & Bakker, D. C. E. An Observation-Based Global Monthly Gridded Sea Surface pCO2 and Air–Sea CO2 Flux Product from 1982 Onward and Its Monthly Climatology Version 5.5, NCEI Accession 0160558 (NOAA National Centers for Environmental Information, 2020).

  9. Khatiwala, S. et al. Global ocean storage of anthropogenic carbon. Biogeosciences 10, 2169–2191 (2013).

    Article  Google Scholar 

  10. Devries, T. The oceanic anthropogenic CO2 sink: storage, air–sea fluxes, and transports over the industrial era. Glob. Biogeochem. Cycles 28, 631–647 (2014).

    Article  Google Scholar 

  11. Srokosz, M. A. & Bryden, H. L. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science 348, 1255575 (2015).

    Article  Google Scholar 

  12. Sarmiento, J., Gruber, N., Brzezinski, M. & Dunne, J. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    Article  Google Scholar 

  13. Macdonald, A. M., Baringer, M. O., Wanninkhof, R., Lee, K. & Wallace, D. W. R. A 1998–1992 comparison of inorganic carbon and its transport across 24.5° N in the Atlantic. Deep Sea Res. Part II 50, 3041–3064 (2003).

    Article  Google Scholar 

  14. Rosón, G., Ríos, A. F., Pérez, F. F., Lavı́n, A. M. & Bryden, H. L. Carbon distribution, fluxes, and budgets in the subtropical North Atlantic Ocean (24.5° N). J. Geophys. Res. 108, 3144 (2003).

    Article  Google Scholar 

  15. Pérez, F. F. et al. Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nat. Geosci. 6, 146–152 (2013).

    Article  Google Scholar 

  16. Álvarez, M., Ríos, A. F., Pérez, F. F., Bryden, H. L. & Rosón, G. Transports and budgets of total inorganic carbon in the subpolar and temperate North Atlantic. Glob. Biogeochem. Cycles 17, 1002 (2003).

    Article  Google Scholar 

  17. Zunino, P. et al. Transports and budgets of anthropogenic CO2 in the tropical North Atlantic in 1992–1993 and 2010–2011. Glob. Biogeochem. Cycles 29, 1075–1091 (2015).

    Article  Google Scholar 

  18. Mikaloff Fletcher, S. E. et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20, GB2002 (2006).

    Article  Google Scholar 

  19. Racapé, V. et al. Transport and storage of anthropogenic C in the North Atlantic subpolar ocean. Biogeosciences 15, 4661–4682 (2018).

    Article  Google Scholar 

  20. Tjiputra, J. F., Assmann, K. & Heinze, C. Anthropogenic carbon dynamics in the changing ocean. Ocean Sci. 6, 605–614 (2010).

    Article  Google Scholar 

  21. McCarthy, G. D. et al. Measuring the Atlantic Meridional Overturning Circulation at 26° N. Prog. Oceanogr. 130, 91–111 (2015).

    Article  Google Scholar 

  22. Cunningham, S. A. et al. Temporal variability of the Atlantic Meridional Overturning Circulation at 26.5° N. Science 317, 935–938 (2007).

    Article  Google Scholar 

  23. Smeed, D. A. et al. Observed decline of the Atlantic Meridional Overturning Circulation 2004–2012. Ocean Sci. 10, 29–38 (2014).

    Article  Google Scholar 

  24. Smeed, D. A. et al. The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett. 45, 1527–1533 (2018).

    Article  Google Scholar 

  25. Schwinger, J. et al. Nonlinearity of ocean carbon cycle feedbacks in CMIP5 Earth system models. J. Clim. 27, 3869–3888 (2014).

    Article  Google Scholar 

  26. McDonagh, E. L. et al. Continuous estimate of Atlantic oceanic freshwater flux at 26.5° N. J. Clim. 28, 8888–8906 (2015).

    Article  Google Scholar 

  27. Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II 56, 554–577 (2009).

    Article  Google Scholar 

  28. Schuster, U. et al. An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009. Biogeosciences 10, 607–627 (2013).

    Article  Google Scholar 

  29. Gruber, N. et al. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23, GB1005 (2009).

    Article  Google Scholar 

  30. McKinley, G. A., Fay, A. R., Takahashi, T. & Metzl, N. Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nat. Geosci. 4, 606–610 (2011).

    Article  Google Scholar 

  31. Woosley, R. J., Millero, F. J. & Wanninkhof, R. Rapid anthropogenic changes in CO2 and pH in the Atlantic Ocean: 2003–2014. Glob. Biogeochem. Cycles 30, 70–90 (2016).

    Article  Google Scholar 

  32. Steinfeldt, R., Rhein, M., Bullister, J. & Tanhua, T. Inventory changes in anthropogenic carbon from 1997–2003 in the Atlantic Ocean between 20° S and 65° N. Glob. Biogeochem. Cycles 23, GB3010 (2009).

    Article  Google Scholar 

  33. Fay, A. R. & McKinley, G. A. Global trends in surface ocean pCO2 from in situ data. Glob. Biogeochem. Cycles 27, 541–557 (2013).

    Article  Google Scholar 

  34. Cheng, W., Chiang, J. C. H. & Zhang, D. Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Clim. 26, 7187–7197 (2013).

    Article  Google Scholar 

  35. Halloran, P. R. et al. The mechanisms of North Atlantic CO2 uptake in a large Earth system model ensemble. Biogeosciences 12, 4497–4508 (2015).

    Article  Google Scholar 

  36. Guallart, E. F., Pérez, F. F., Rosón, G. & Ríos, A. F. High Spatial Resolution Alkalinity and pH Measurements by IIM-CSIC Group Along 24.5° N During the R/V Hesperides WOCE Section A05 Cruise (July 14–August 15, 1992) (IIM-CSIC, 2013).

  37. Brown, P. J., Bakker, D. C. E., Schuster, U. & Watson, A. J. Anthropogenic carbon accumulation in the subtropical North Atlantic. J. Geophys. Res. 115, C04016 (2010).

    Google Scholar 

  38. Schuster, U. et al. Measurements of total alkalinity and inorganic dissolved carbon in the Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010. Earth Syst. Sci. Data 6, 175–183 (2014).

    Article  Google Scholar 

  39. Guallart, E. F. et al. Trends in anthropogenic CO2 in water masses of the subtropical North Atlantic Ocean. Prog. Oceanogr. 131, 21–32 (2015).

    Article  Google Scholar 

  40. Wanninkhof, R. et al. Ocean acidification along the Gulf Coast and East Coast of the USA. Cont. Shelf Res. 98, 54–71 (2015).

    Article  Google Scholar 

  41. Olsen, A. et al. GLODAPv2.2019—an update of GLODAPv2. Earth Syst. Sci. Data 11, 1437–1461 (2019).

    Article  Google Scholar 

  42. Vázquez-Rodríguez, M. et al. Anthropogenic carbon distributions in the Atlantic Ocean: data-based estimates from the Arctic to the Antarctic. Biogeosciences 6, 439–451 (2009).

    Article  Google Scholar 

  43. Touratier, F., Azouzi, L. & Goyet, C. CFC-11, Δ14C and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. Tellus B 59, 318–325 (2007).

    Article  Google Scholar 

  44. Gruber, N., Sarmiento, J. L. & Stocker, T. F. An improved method for detecting anthropogenic CO2 in the oceans. Glob. Biogeochem. Cycles 10, 809–837 (1996).

    Article  Google Scholar 

  45. Waugh, D. W., Hall, T. M., McNeil, B. I., Key, R. & Matear, R. J. Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus B 58, 376–389 (2006).

    Article  Google Scholar 

  46. Yool, A., Oschlies, A., Nurser, A. & Gruber, N. A model-based assessment of the TrOCA approach for estimating anthropogenic carbon in the ocean. Biogeosciences 7, 723–751 (2010).

    Article  Google Scholar 

  47. de Boyer Montégut, C., Madec, G., Fischer, A., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. 109, C12003 (2004).

    Article  Google Scholar 

  48. Álvarez, M. & Gourcuff, C. Uncoupled transport of chlorofluorocarbons and anthropogenic carbon in the subpolar North Atlantic. Deep Sea Res. Part I 57, 860–868 (2010).

    Article  Google Scholar 

  49. Landschützer, P. et al. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 10, 7793–7815 (2013).

    Article  Google Scholar 

  50. Bakker, D. C. E. et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8, 383–413 (2016).

    Article  Google Scholar 

  51. GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project—Carbon Dioxide (NOAA, 2011).

  52. Körtzinger, A. in Methods of Seawater Analysis (eds Grasshoff, K. et al.) 149–158 (Wiley, 1999).

  53. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  54. Takahashi, T. et al. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem. 164, 95–125 (2014).

    Article  Google Scholar 

  55. van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E., and Wallace, D. W. R.: CO2SYS v 1.1, MATLAB program developed for CO2 system calculations, ORNL/CDIAC-105b, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA, https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_MATLAB_v1.1/, 2011

  56. Gruber, N. Anthropogenic CO2 in the Atlantic Ocean. Glob. Biogeochem. Cycles 12, 165–191 (1998).

    Article  Google Scholar 

  57. Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).

    Article  Google Scholar 

  58. Baringer, M. O. N. & Larsen, J. C. Sixteen years of Florida current transport at 27° N. Geophys. Res. Lett. 28, 3179–3182 (2001).

    Article  Google Scholar 

  59. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  60. Couldrey, M. P., Oliver, K. I. C., Yool, A., Halloran, P. R. & Achterberg, E. P. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability? Glob. Biogeochem. Cycles 30, 787–802 (2016).

    Article  Google Scholar 

  61. Lee, K. et al. An updated anthropogenic CO2 inventory in the Atlantic Ocean. Glob. Biogeochem. Cycles 17, 1116 (2003).

  62. Brewer, P. G., Bradshaw, A. L., Shafer, D. K. & Williams, R. T. in The Changing Carbon Cycle: A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 348–370 (Springer, 1986).

  63. Brown P. J. et al. Anthropogenic Carbon Transports at 26N as Estimated Using the RAPID–MOCHA–WBTS array for 2004 to 2012 (British Oceanographic Data Centre, 2020).

Download references

Acknowledgements

The authors are grateful for support from the UK Natural Environment Research Council through projects Radiatively Active Gases from the North Atlantic Region and Climate Change (RAGNARoCC) NE/K00249X/1, Atlantic Biogeochemical Fluxes (ABC-Fluxes) NE/M005046/1 and RAPID-AMOC ((P.J.B., E.L.M., B.A.K., R.S., A.J.W., U.S., M.-J.M., D.A.S.), the NOAA Global Ocean Monitoring and Observation Program (GOMO) (via the Western Boundary Time Series project; FundRef number 100007298) and the NOAA Atlantic Oceanographic and Meteorological Laboratory (M.O.B., C.S.M., R.W.).

Author information

Authors and Affiliations

Authors

Contributions

E.L.M., B.A.K., R.S. and A.J.W. designed the study. P.J.B. performed the analysis. P.J.B., E.L.M., R.S. and A.J.W. wrote the manuscript. D.A.S., U.S., M.O.B., C.S.M. and R.W. gave technical support and conceptual advice. M.O.B., C.S.M., A.Y., U.S. and M.-J.M. contributed observational data.

Corresponding author

Correspondence to Peter J. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Gabriel Rosón and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Predictive coefficients a–d and constant y0 from PREs for individual bins
Extended Data Table 2 Canth transport uncertainty estimates

Extended Data Fig. 1 PRE regions and performance statistics.

a, Data bin locations for generation of independent predictive multiple linear regressions for Canth estimation, b, individual predictive PRE root mean square error, and c, individual predictive PRE R2 for each data bin for ΔC* Canth. Box colours and numbers relate to Extended Data Fig. 3 & 4.

Source data

Extended Data Fig. 2 PRE residuals (predicted Canth – bottle Canth) plotted against depth.

a, for individual PREs, b, for all outputs binned, for ΔC* Canth. Numbers and colours relate to regions in Extended Data Fig. 1a. Dots relate to Western basin, circles to Eastern basin.

Source data

Extended Data Fig. 3 Bottle Canth estimates versus PRE predicted Canth for ΔC* Canth.

Numbers and colours relate to regions in Extended Data Fig. 1a. Black lines indicate unity. Red lines indicate linear least squares fit of bottle estimates versus predicted. Dots relate to Western basin, circles to Eastern basin.

Source data

Extended Data Fig. 4 Schematic of PreIndustrial DisEquilibrium (SPIDEr) mixed layer Canth calculation.

Blue colour implies preindustrial era, yellow colour implies modern era. Numbers on left refer to explanations in Methods text.

Extended Data Fig. 5 Variability in predicted surface layer Canth.

For 2009 at 62.375° W with Canth plotted against a, pressure, b, neutral density and c, potential temperature. Colour refers to time of year.

Source data

Extended Data Fig. 6 Canth transports across Florida Straits and 26.5°N.

a, transport-weighted Canth transports and volume transports for Florida Straits in 2004, 2010 and 2012. Lines are linear predictive fits. TTD has no data for 2012. b, Canth transports across 26.5°N on 10-day (thin lines) and 3-month filtered (thick lines) timescales for 2004.3-2012.8 for four Canth calculation methods with 2004-2012 averages and standard deviation.

Source data

Extended Data Fig. 7 Application of Canth transport calculation methodology to model outputs.

Anthropogenic carbon transports (a,c) and their residual from the model truth (b,d) for 1980-2100 (a,b) and 2004-2013 (c,d) for five unique applications of the PRE methodology applied to 1° NEMO-MEDUSA model outputs. Legend lists colour schemes of model truth, and different modifications of PRE methodology applied. For conversion of carbon transports, 660 kmol s-1 = 0.25 Pg C yr-1.

Source data

Extended Data Fig. 8 Application of back-calculation Canth methodology to model outputs.

Top: Anthropogenic carbon transports for 1980-2100 for 1. application of ΔC* Canth calculation method to 1° NEMO-MEDUSA model outputs combined with model velocity fields, and 2. model truth. Bottom, as for top but for 2004-2013. Monthly values and 12-month running mean shown for both. For conversion of carbon transports, 660 kmol s-1 = 0.25 Pg C yr-1.

Source data

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, P.J., McDonagh, E.L., Sanders, R. et al. Circulation-driven variability of Atlantic anthropogenic carbon transports and uptake. Nat. Geosci. 14, 571–577 (2021). https://doi.org/10.1038/s41561-021-00774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00774-5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene