Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration

Abstract

Deuterium-incorporated compounds are of high interest owing to their importance in the pharmaceutical industry, organic synthesis and materials science. So far, the integration of deuterium into the inert, saturated magic methyl or methylene groups of covalent molecules remains challenging. Here, we present a 1,4-H delivery of allylic metallic species to provide a highly stereoselective and straightforward approach to 3-methyl-2(E)-enals or -enones from readily available 2,3-allenols and organoboronic acids. The reaction accommodates many synthetically versatile functional groups as well as multi-pharmacophores, and is not limited to the formation of 3-methyl derivatives. By applying 1,4-H or D delivery, deuterium atom(s) from differently deuterated allenols can be edited into the methyl or methylene groups of versatile organic skeletons, resulting in the efficient formation of 4-monodeuterated, 1,4- and 4,4-doubly deuterated, and 4,4,4-triply deuterated 2(E)-enals or -enones. These powerful platform molecules can provide straightforward paths to other deuterated compounds for different purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The importance of deuterated compounds, the magic methyl effect and strategies for deuteration.
Fig. 2: Scope of the reaction of allenols 1 with organoboronic acids 2.
Fig. 3: Modular incorporation of pharmacophores.
Fig. 4: Divergent syntheses of deuterated compounds.
Fig. 5: Mechanistic studies.

Similar content being viewed by others

Data availability

Experimental procedures, characterization of the compounds and density functional theory calculations are available in the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1939682 (E-3ak) and 1939713 (E-3ed). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data are available from the corresponding authors upon reasonable request.

References

  1. Gant, T. G. Using deuterium in drug discovery: leaving the label in the drug. J. Med. Chem. 57, 3595–3611 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. 57, 1758–1784 (2018).

    Article  CAS  Google Scholar 

  3. Pirali, T., Serafini, M., Cargnin, S. & Genazzani, A. A. Applications of deuterium in medicinal chemistry. J. Med. Chem. 62, 5276–5297 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Atzrodt, J., Derdau, V., Fey, T. & Zimmermann, J. The renaissance of H/D exchange. Angew. Chem. Int. Ed. 46, 7744–7765 (2007).

    Article  CAS  Google Scholar 

  5. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. C–H functionalisation for hydrogen isotope exchange. Angew. Chem. Int. Ed. 57, 3022–3047 (2018).

    Article  CAS  Google Scholar 

  6. Nguyen, T. D. et al. Isotope effect in spin response of π-conjugated polymer films and devices. Nat. Mater. 9, 345–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Hirata, S., Totani, K., Watanabe, T., Kaji, H. & Vacha, M. Relationship between room temperature phosphorescence and deuteration position in a purely aromatic compound. Chem. Phys. Lett. 591, 119–125 (2014).

    Article  CAS  Google Scholar 

  8. Shao, M. et al. The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nat. Commun. 5, 3180 (2014).

    Article  PubMed  Google Scholar 

  9. Bernardi, R. et al. On the components of secretion of mandibular glands of the ant Lasius (Dendrolasius) fuliginosus. Tetrahedron Lett. 8, 3893–3896 (1967).

    Article  Google Scholar 

  10. Yunker, M. B. & Scheuer, P. J. Mokupalides, three novel hexaprenoids from a marine sponge. J. Am. Chem. Soc. 100, 307–309 (1978).

    Article  CAS  Google Scholar 

  11. Barreiro, E. J., Kümmerle, A. E. & Fraga, C. A. M. The methylation effect in medicinal chemistry. Chem. Rev. 111, 5215–5246 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Leung, C. S., Leung, S. S. F., Tirado-Rives, J. & Jorgensen, W. L. Methyl effects on protein–ligand binding. J. Med. Chem. 55, 4489–4500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schönherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C–H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013).

    Article  CAS  Google Scholar 

  14. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Young, R. J. et al. Selective and dual action orally active inhibitors of thrombin and factor Xa. Bioorg. Med. Chem. Lett. 17, 2927–2930 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. He, Z.-T., Li, H., Haydl, A. M., Whiteker, G. T. & Hartwig, J. F. Trimethylphosphate as a methylating agent for cross coupling: A slow-release mechanism for the methylation of arylboronic esters. J. Am. Chem. Soc. 140, 17197–17202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng, K. et al. Late-stage oxidative C(sp3)–H methylation. Nature 580, 621–627 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Friis, S. D., Johansson, M. J. & Ackermann, L. Cobalt-catalysed C–H methylation for late-stage drug diversification. Nat. Chem. 12, 511–519 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Mullard, A. FDA approves first deuterated drug. Nat. Rev. Drug Discov. 16, 305 (2017).

    PubMed  Google Scholar 

  20. Wang, M., Zhao, Y., Zhao, Y. & Shi, Z. Bioinspired design of a robust d3-methylating agent. Sci. Adv. 6, eaba0946 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hilton, M. J. et al. Investigating the nature of palladium chain-walking in the enantioselective redox-relay Heck reaction of alkenyl alcohols. J. Org. Chem. 79, 11841–11850 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krishnakumar, V. & Gunanathan, C. Ruthenium-catalyzed selective α-deuteration of aliphatic nitriles using D2O. Chem. Commun. 54, 8705–8708 (2018).

    Article  CAS  Google Scholar 

  24. Chang, Y. et al. Catalytic deuterium incorporation within metabolically stable β-amino C–H bonds of drug molecules. J. Am. Chem. Soc. 141, 14570–14575 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, X. et al. Carbene-catalyzed α,γ-deuteration of enals under oxidative conditions. ACS Catal. 10, 5475–5482 (2020).

    Article  CAS  Google Scholar 

  26. Li, H. et al. Pentafluorophenyl esters: highly chemoselective ketyl precursors for the synthesis of α,α-dideuterio alcohols using SmI2 and D2O as a deuterium source. Org. Lett. 22, 1249–1253 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Kurimoto, A., Sherbo, R. S., Cao, Y., Loo, N. W. X. & Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 3, 719–726 (2020).

    Article  CAS  Google Scholar 

  28. Ou, W. et al. Room-temperature palladium-catalyzed deuterogenolysis of carbon oxygen bonds towards deuterated pharmaceuticals. Angew. Chem. Int. Ed. 60, 6357–6361 (2021).

    Article  CAS  Google Scholar 

  29. Hartwig, J. Organotransition Metal Chemistry: from Bonding to Catalysis (University Science Books, 2009).

  30. Tsuji, J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis (Wiley, 2000).

  31. Beller, M. & Bolm, C. (eds) Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals 2nd edn (Wiley-VCH, 2004).

  32. Albada, B. & Metzler-Nolte, N. Organometallic–peptide bioconjugates: synthetic strategies and medicinal applications. Chem. Rev. 116, 11797–11839 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Buchmeiser, M. R. Homogeneous metathesis polymerization by well-defined group VI and group VIII transition-metal alkylidenes: fundamentals and applications in the preparation of advanced materials. Chem. Rev. 100, 1565–1604 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Yam, V. W.-W., Au, V. K.-M. & Leung, S. Y.-L. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem. Rev. 115, 7589–7728 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto, Y. & Asao, N. Selective reactions using allylic metals. Chem. Rev. 93, 2207–2293 (1993).

    Article  CAS  Google Scholar 

  36. Spielmann, K., Niel, G., de Figueiredo, R. M. & Campagne, J.-M. Catalytic nucleophilic ‘umpoled’ π-allyl reagents. Chem. Soc. Rev. 47, 1159–1173 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Hauser, F. M., Tommasi, R., Hewawasam, P. & Rho, Y. S. Stereospecific syntheses of (E)-1,3-disubstituted dienes. J. Org. Chem. 53, 4886–4887 (1988).

    Article  CAS  Google Scholar 

  38. Wang, R., Luan, Y. & Ye, M. Transition metal-catalyzed allylic C(sp3)–H functionalization via η3-allylmetal intermediate. Chin. J. Chem. 37, 720–743 (2019).

    Article  CAS  Google Scholar 

  39. Chen, M. S., Prabagaran, N., Labenz, N. A. & White, M. C. Serial ligand catalysis: a highly selective allylic C–H oxidation. J. Am. Chem. Soc. 127, 6970–6971 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Campbell, A. N., White, P. B., Guzei, I. A. & Stahl, S. S. Allylic C–H acetoxylation with a 4,5-diazafluorenone-ligated palladium catalyst: a ligand-based strategy to achieve aerobic catalytic turnover. J. Am. Chem. Soc. 132, 15116–15119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma, A. & Hartwig, J. F. Enantioselective functionalization of allylic C–H bonds following a strategy of functionalization and diversification. J. Am. Chem. Soc. 135, 17983–17989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Andrus, M. B. & Zhou, Z. Highly enantioselective copper–bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate. J. Am. Chem. Soc. 124, 8806–8807 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Du, H., Yuan, W., Zhao, B. & Shi, Y. A Pd(0)-catalyzed diamination of terminal olefins at allylic and homoallylic carbons via formal C–H activation under solvent-free conditions. J. Am. Chem. Soc. 129, 7496–7497 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Bayeh, L., Le, P. Q. & Tambar, U. K. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block. Nature 547, 196–200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lerchen, A. et al. Non‐directed cross‐dehydrogenative (hetero)arylation of allylic C(sp3)–H bonds enabled by C–H activation. Angew. Chem. Int. Ed. 57, 15248–15252 (2018).

    Article  CAS  Google Scholar 

  47. Lei, H. & Rovis, T. Ir-catalyzed intermolecular branch-selective allylic C–H amidation of unactivated terminal olefins. J. Am. Chem. Soc. 141, 2268–2273 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zimmer, R., Dinesh, C. U., Nandanan, E. & Khan, F. A. Palladium-catalyzed reactions of allenes. Chem. Rev. 100, 3067–3125 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Ma, S. Transition metal-catalyzed/mediated reaction of allenes with a nucleophilic functionality connected to the α-carbon atom. Acc. Chem. Res. 36, 701–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, W., Qian, H. & Ma, S. Rh-catalyzed reaction of propargylic alcohols with aryl boronic acids–switch from β-OH elimination to protodemetalation. Chin. J. Chem. 38, 331–345 (2020).

    Article  CAS  Google Scholar 

  51. Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Lonsdale, R. & Ward, R. A. Structure-based design of targeted covalent inhibitors. Chem. Soc. Rev. 47, 3816–3830 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Q. et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20, 146–159 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Huang, X. & Ma, S. Allenation of terminal alkynes with aldehydes and ketones. Acc. Chem. Res. 52, 1301–1312 (2019).

    CAS  PubMed  Google Scholar 

  55. Uma, R., Davies, M. K., Crévisy, C. & Grée, R. Efficient isomerization of allylic alcohols to saturated carbonyl compounds by activated rhodium and ruthenium complexes. Eur. J. Org. Chem. 2001, 3141–3146 (2001).

    Article  Google Scholar 

  56. Ahlsten, N., Lundberg, H. & Martín-Matute, B. Rhodium-catalysed isomerisation of allylic alcohols in water at ambient temperature. Green. Chem. 12, 1628–1633 (2010).

    Article  CAS  Google Scholar 

  57. Liu, T.-L., Ng, T. W. & Zhao, Y. Rhodium-catalyzed enantioselective isomerization of secondary allylic alcohols. J. Am. Chem. Soc. 139, 3643–3646 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant numbers 21690063 and 21988101 for S.M. and grant no. 21801041 for H.Q.) is acknowledged. We thank H. Xu for reproducing the results for compounds E-3am, E-3fd and E-3iv presented in Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

S.M., H.Q. and W.W. designed the experiments. W.W., Y.Y. and H.Q. performed the experiments. X.Z. and H.F. performed the density functional theory calculations. W.W., H.Q., X.Z., B.C. and S.M. wrote the manuscript.

Corresponding authors

Correspondence to Xue Zhang, Hui Qian or Shengming Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Jie An, Yu Lan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–14, Table 1, References and spectra of the products.

Supplementary Data 1

Crystallographic data of compound E-3ak.

Supplementary Data 2

Crystallographic data of compound E-3ed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yu, Y., Cheng, B. et al. Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration. Nat Catal 4, 586–594 (2021). https://doi.org/10.1038/s41929-021-00643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00643-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing