Skip to main content
Log in

Ultrasonic Dissipative Soliton in a Nonequilibrium Paramagnetic Crystal

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The propagation of an ultrasonic gigahertz pulse in a low-temperature crystal containing paramagnetic ions with the inversed population of Zeeman sublevels of the resonance spin–phonon transition has been studied. An integrodifferential parabolic equation with a nonlinear autonomous source and irreversible losses has been obtained in the fast phase relaxation approximation for a local relative deformation of a pulse. The exact analytical solution of this equation in the form of a dissipative soliton with an asymmetric temporal profile has been obtained and analyzed in detail. The velocity of the soliton is close to the linear group velocity of ultrasound. It has shown that such a soliton can be formed only if irreversible losses caused by processes that are not related to spin–phonon transitions exist in addition to losses caused by the phase relaxation of spin–phonon transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. F. V. Bunkin, Yu. A. Kravtsov, and G. A. Lyakhov, Sov. Phys. Usp. 29, 607 (1986)].

    Article  ADS  Google Scholar 

  2. V. A. Golenishchev-Kutuzov, V. V. Samartsev, N. K. Solovarov, and B. M. Khabibullin, Magnetic Quantum Acoustics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  3. S. L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).

    Article  ADS  Google Scholar 

  4. N. S. Shiren, Phys. Rev. B 2, 2471 (1970).

    Article  ADS  Google Scholar 

  5. G. A. Denisenko, J. Exp. Theor. Phys. 33, 1220 (1971).

    ADS  Google Scholar 

  6. V. V. Samartsev, B. P. Smolyakov, and R. Z. Sharipov, JETP Lett. 20, 296 (1974).

    ADS  Google Scholar 

  7. A. A. Zabolotskii, JETP Lett. 77, 464 (2003).

    Article  ADS  Google Scholar 

  8. S. V. Sazonov, J. Exp. Theor. Phys. 109, 57 (2009).

    Article  ADS  Google Scholar 

  9. S. V. Sazonov and N. V. Ustinov, Roman. Rep. Phys. 72, 508 (2020).

    Google Scholar 

  10. N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, and Ph. Grelu, Int. J. Bifurc. Chaos 19, 2621 (2009).

    Article  Google Scholar 

  11. N. N. Rosanov, Dissipative Optical Solitons. From Micro to Nano and Atto (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  12. N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, Appl. Phys. Lett. B 81, 937 (2005).

    Article  ADS  Google Scholar 

  13. C. H. Tsang, B. A. Malomed, and K. W. Chow, Phys. Rev. E 84, 066609 (2011).

    Article  ADS  Google Scholar 

  14. N. A. Veretenov, N. N. Rosanov, and S. V. Fedorov, Phys. Rev. Lett. 117, 183901 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. V. Fedorov, N. N. Rosanov, and N. A. Veretenov, JETP Lett. 107, 327 (2018).

    Article  ADS  Google Scholar 

  16. S. K. Turitsyn, N. N. Rosanov, I. A. Yarutkina, A. E. Bednyakova, S. V. Fedorov, O. V. Shtyrina, and M. P. Fedoruk, Phys. Usp. 59, 642 (2016).

    Article  ADS  Google Scholar 

  17. V. E. Lobanov, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Opt. Lett. 36, 85 (2011).

    Article  ADS  Google Scholar 

  18. S. Yanchuk, S. Ruschel, J. Sieber, and M. Wolfrum, Phys. Rev. Lett. 123, 053901 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Mayteevarunyoo, B. A. Malomed, and D. V. Skryabin, Opt. Express 27, 037364 (2019).

    Article  Google Scholar 

  20. S. V. Sazonov, JETP Lett. 53, 420 (1991).

    ADS  Google Scholar 

  21. S. V. Sazonov, J. Phys: Condens. Matter 7, 175 (1995).

    ADS  Google Scholar 

  22. A. Yu. Parkhomenko and S. V. Sazonov, J. Exp. Theor. Phys. 87, 864 (1998).

    Article  ADS  Google Scholar 

  23. S. V. Sazonov, Phys. Usp. 44, 631 (2001).

    Article  ADS  Google Scholar 

  24. D. A. Dolinina, A. S. Shalin, and A. V. Yulin, JETP Lett. 110, 744 (2019).

    Article  ADS  Google Scholar 

  25. D. A. Dolinina, A. S. Shalin, and A. V. Yulin, JETP Lett. 111, 268 (2020).

    Article  ADS  Google Scholar 

  26. D. A. Dolinina, A. S. Shalin, and A. V. Yulin, JETP Lett. 112, 71 (2020)].

    Article  ADS  Google Scholar 

  27. V. M. Levin, E. S. Morokov, and K. A. Valuev, JETP Lett. 113, 61 (2021)].

    Article  ADS  Google Scholar 

  28. U. Kh. Kopvillem and V. D. Korepanov, Sov. Phys. JETP 41, 211 (1961).

    Google Scholar 

  29. C. Kittel, Phys. Rev. Lett. 6, 449 (1961).

    Article  ADS  Google Scholar 

  30. E. B. Tucker, Phys. Rev. Lett. 6, 547 (1961).

    Article  ADS  Google Scholar 

  31. J. W. Tucker and V. W. Rampton, Microwave Ultrasonics in Solid State Physics (North-Holland, Amsterdam, 1972).

    Google Scholar 

  32. S. V. Sazonov, J. Exp. Theor. Phys. 91, 16 (2000)].

    Article  ADS  Google Scholar 

  33. K. N. Baranskii, Physical Acoustics of Crystals (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  34. V. A. Krasil’nikov and V. V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  35. M. D. Crisp, Phys. Rev. A 8, 2128 (1973).

    Article  ADS  Google Scholar 

  36. P. G. Kryukov and V. S. Letokhov, Sov. Phys. Usp. 12, 641 (1970).

    Article  ADS  Google Scholar 

  37. R. A. Fisher, Ann. Eugen. 7, 355 (1937).

    Article  Google Scholar 

  38. M. J. Ablowitz and A. Zeppetella, Bull. Math. Biol. 41, 835 (1979).

    Article  MathSciNet  Google Scholar 

  39. N. N. Rosanov and S. V. Fedorov, Opt. Spectrosc. 72, 782 (1992).

    ADS  Google Scholar 

  40. N. N. Rosanov and S. V. Fedorov, Opt. Spectrosc. 84, 767 (1998).

    ADS  Google Scholar 

  41. M. M. Pieczarka, D. Poletti, C. Schneider, S. Höfling, E. A. Ostrovskaya, G. Sek, and M. Syperek, APL Photon. 5, 086103 (2020).

  42. J. de Klerk, Phys. Rev. A 139, 1635 (1965).

    Article  ADS  Google Scholar 

  43. S. V. Voronkov and S. V. Sazonov, JETP 93, 236 (2001).

    Article  ADS  Google Scholar 

  44. A. A. Zabolotskii, JETP Lett. 76, 607 (2002).

    Article  ADS  Google Scholar 

  45. A. A. Zabolotskii, Phys. Rev. E 67, 066606 (2003).

    Article  ADS  Google Scholar 

  46. A. V. Gulakov and S. V. Sazonov, J. Phys.: Condens. Matter 16, 1733 (2004).

    ADS  Google Scholar 

  47. S. V. Sazonov and N. V. Ustinov, Phys. Rev. E 73, 056614 (2006).

    Article  ADS  Google Scholar 

  48. S. V. Sazonov and N. V. Ustinov, Theor. Math. Phys. 151, 632 (2007).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-11-01157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sazonov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazonov, S.V. Ultrasonic Dissipative Soliton in a Nonequilibrium Paramagnetic Crystal. Jetp Lett. 113, 592–598 (2021). https://doi.org/10.1134/S0021364021090101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021090101

Navigation