Skip to main content
Log in

Correlations between the Structures of Binuclear Copper(II) Tetracarboxylates with 1,4-Dioxane and the Nature of Substituent R in the Carboxylate Anion

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The dissolution of aqueous copper(II) acetate in coordinating bidentate 1,4-dioxane (reflux) affords anhydrous mononuclear complex Cu2(µ-OOCMe)4(dioxane)2 (I) (Cu…Cu 2.5781(3) Å). The crystal of complex I contains contacts of the α-H atom of the CH2 fragments of coordinated dioxane with the oxygen atom of the bridging anion with the formation of the 2D metal-organic framework (MOF). The anionic exchange reactions of the acetate bridges by pivalate or trifluoroacetate groups with the corresponding acids in boiling dioxane give 1D MOF {Cu2(µ-OOCR)4(dioxane)}n (R = tBu (II), Cu…Cu 2.5493(7) Å; CF3 (III), Cu…Cu 2.6391(12) Å) characterized by the step and linear geometry, respectively. A similar reaction of Cu2(µ-OOCMe)4(OH2)2 with HOOCCF3 but at room temperature in the presence of crude benzene affords mononuclear complex Cu(OOCCF3)2(OH2)3·2 dioxane (IV). Complexes IIV are studied by elemental and X-ray diffraction analyses (CIF files CCDC nos. 2052618 (I), 2052619 (II), 2052620 (III), and 2052617 (IV)). The influence of the electronic and steric factors of substituents R on the compositions and structures of the mononuclear complexes and MOFs with 1,4-dioxane are discussed for the synthesized and known copper(II) tetracarboxylates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Cotton, F.A., Wilkinson, G., Murillo, C.A., and Bochmann, M., Advanced Inorganic Chemistry, New York: Wiley, 1999.

    Google Scholar 

  2. Mehrotra, R.C. and Bohra, R., Metal Carboxylates, London: Academic, 1983.

    Google Scholar 

  3. Rakitin, Yu.V. and Kalinnikov, V.T., Sovremennaya magnetokhimiya (Modern Magnetic Chemistry), St. Petersburg: Nauka, 1984.

  4. Lippard, S.J. and Berg, J.M., Principles of Bioinorganic Chemistry, Mill Valley: University Science Books, 1994, p. 199.

    Google Scholar 

  5. Solomon, E.I., Sundaram, U.M., and Machonkin, T.E., Chem. Rev., 1996, vol. 96, p. 2563. https://doi.org/10.1021/cr950046o

    Article  CAS  PubMed  Google Scholar 

  6. Cook, T.R., Zheng, Y.-R., and Stang, P.J., Chem. Rev., 2013, vol. 113, p. 734. https://doi.org/10.1021/cr3002824

    Article  CAS  PubMed  Google Scholar 

  7. Stock, N. and Biswas, S., Chem. Rev., 2012, vol. 112, p. 933. https://doi.org/10.1021/cr200304e

    Article  CAS  PubMed  Google Scholar 

  8. Furukawa, H., Cordova, K.E., O’Keeffe, M., et al., Science, 2013, vol. 341, p. 97. https://doi.org/10.1126/science.1230444

    Article  CAS  Google Scholar 

  9. Stavila, V., Talin, A.A., and Allendorf, M.D., Chem. Soc. Rev., 2014, vol. 43, p. 5994. https://doi.org/10.1039/C4CS00096J

    Article  CAS  PubMed  Google Scholar 

  10. Uvarova, M., Sinelshchikova, A., Golubnichaya, M., et al., Cryst. Growth Des., 2014, no. 11, p. 5976. https://doi.org/10.1021/cg501157e

  11. Mitrofanov, A.Yu., Rousseli, Y., Guilard, R., et al., New J. Chem., 2016, vol. 40, p. 5896. https://doi.org/10.1039/C5NJ03572D

    Article  CAS  Google Scholar 

  12. Eremenko, I.L., Novotortsev, V.M., Sidorov, A.A., and Fomina, I.G., Ross. Khim. Zh., 2004, vol. 48, no. 1, p. 49.

    CAS  Google Scholar 

  13. Becht, M., Gerfin, T., and Dahmen, K.-H., Helv. Chim. Acta, 1994, vol. 77, p. 1288. https://doi.org/10.1002/hlca.19940770511

    Article  CAS  Google Scholar 

  14. Pratt, R.C., Mirica, L.M., and Stack, T.D.P., Inorg. Chem., 2004, p. 8030. https://doi.org/10.1021/ic048904z

  15. Tomkowicz, Z., Ostrovsky, S., Foro, S., et al., Inorg. Chem., 2012, vol. 51, no. 11, p. 6046. https://doi.org/10.1021/ic202529p

    Article  CAS  Google Scholar 

  16. Mikhalitsyna, E.A., Tyurin, V.S., Nefedov, S.E., et al., Eur. J. Inorg. Chem., 2012, vol. 36, p. 5979. https://doi.org/10.1002/ejic.201200868

    Article  CAS  Google Scholar 

  17. Hiroto, S., Furukawa, K., Shinokubo, H., and Osuka, A., J. Am. Chem. Soc., 2006, p. 12380. https://doi.org/10.1021/ja062654z

  18. Sinelshchikova, A.A., Nefedov, S.E., Enakieva, Yu.Yu., et al., Inorg. Chem., 2013, vol. 52, no. 2, p. 999. https://doi.org/10.1021/ic302257g

    Article  CAS  PubMed  Google Scholar 

  19. Becker, H., Domshcke, G., Fanghaenel, E., and Fischer, M., Organikum. Organisch-Chemisches Grundpraktikum, Berlin: Deutscher Verlag für Wissenschäften, 1992, vol. 1.

    Google Scholar 

  20. Ingold, C.K. Structure and Mechanism in Organic Chemistry, Ithaca: Cornell University, 1969.

    Google Scholar 

  21. SMART (control) and SAINT (integration) Software. Version 5.0, Madison: Bruker AXS Inc., 1997.

  22. SAINT. Area-Detector Integration Sofware, Madison: Bruker AXS Inc., 2012.

  23. Sheldrick, G.M., SADABS. Program for Scaling and Correction of Area Detector Data, Göttingen: Univ. of Göttingen, 1997.

    Google Scholar 

  24. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  25. Uvarova, M.A. and Nefedov, S.E., Russ. J. Coord. Chem., 2020, vol. 46, p. 608. https://doi.org/10.1134/S1070328420090079

    Article  Google Scholar 

  26. Uvarova, M.A. and Nefedov, S.E., Russ. J. Inorg. Chem., 2021, vol. 66, no. 6. https://doi.org/10.31857/S0044457X21060209

  27. CSD. Version 5.42 (November 2020).

  28. Smart, P., Espallargas, G.M., and Brammer, L., CrystEngComm, 2008, p. 1335. https://doi.org/10.1039/b806765a

  29. Reck, G., Jahnig, W., and Prakt, J., Chem. Chem. Zeitung, 1979, vol. 321, p. 549. https://doi.org/10.1002/prac.19793210406

    Article  CAS  Google Scholar 

  30. Kani, Y., Tsuchimoto, M., Ohba, S., and Tokii, T., Acta Crystallogr., Sect. C:. Cryst. Struct. Commun., 2000, vol. 56, p. e80. https://doi.org/10.1107/S0108270100002304

    Article  CAS  Google Scholar 

  31. Borel, M.M. and Leclaire, A., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1976, vol. 32, p. 1275.

    Article  Google Scholar 

  32. Larionov, S.V., Glinskaya, L.A., Klevtsova, R.F., et al., Russ. J. Inorg. Chem., 1991, vol. 36, p. 2514.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The XRD and IR spectral studies of the complexes were carried out using the equipment of the Center for Collective Use of Physical Methods of Investigation at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) functioning in terms of the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the area of basic research.

Funding

This work was supported by the state assignment of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the area of basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Nefedov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

To blessed memory of Teacher: to the 80th birthday of Prof. A.A. Pasynskii

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvarova, M.A., Nefedov, S.E. Correlations between the Structures of Binuclear Copper(II) Tetracarboxylates with 1,4-Dioxane and the Nature of Substituent R in the Carboxylate Anion. Russ J Coord Chem 47, 399–408 (2021). https://doi.org/10.1134/S1070328421060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328421060087

Keywords:

Navigation