Skip to main content
Log in

Recovery of Uranium from Sulfate Leach Liquor Using Natural Orange Peel Extractant

  • Published:
Radiochemistry Aims and scope

Abstract

An efficient natural bioextractant, orange peel extractant, was applied to recover uranium as one of hazardous elements. Batch experiments were carried out to determine the effect of various factors on the uranium extraction using a synthetic standard solution. These factors include the diluent type, pH, solvent concentration, contact time, and temperature. Under the optimum conditions (pH 4, A/O = 3/1), the maximum saturation capacity of the orange peel extractant for uranium reaches approximately 54.5 mg/g. The extracted uranium ions were almost completely eluted with NaCl/H2SO4 (1 M each). The procedure was applied to real sulfate leach liquor of a clay stone sample from Southeastern Sinai, Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Matheickal, J.T., Yu, Q., and Woodburn, G.M., Water Res., 1999, vol. 33, pp. 335−342. https://doi.org/10.1016/S0043-1354(98)00237-1

    Article  CAS  Google Scholar 

  2. Mahmoud, M.A., J. Chem. Eng. Process. Technol., 2013, pp. 4–6. https://doi.org/10.4172/2157-7048.1000169

    Article  CAS  Google Scholar 

  3. Moronkola, B.A., Giwa-Ajeniya, A.O., Alegbe, M.J., Eshilokun, A.O., Awokoya, K.N., and Okoh, O.O., J. Org. Inorg. Chem., 2016, vol. 2, pp. 1–6. https://doi.org/10.21767/2472-1123.100013

    Article  Google Scholar 

  4. Imran, A., Mohd, A., and Khan, T.A., J. Environ. Manag., 2012, vol. 113, pp. 170–183. https://doi.org/10.1016/j.jenvman.2012.08.028

    Article  CAS  Google Scholar 

  5. El-Mesallamy, A.M., El-Sheikh, E.M., Manaa, E.M., and El-Maksoud, M., Int. J. Adv. Res., 2015, vol. 3, no. 11, pp. 50–65. https://www.researchgate.net/publication/317605093.

    CAS  Google Scholar 

  6. Lucks, C., Rossberg, A., Tsushima, S., Foerstendorf, H., Scheinost, A.C., and Bernhard, G., Inorg. Chem., 2012, vol. 51, no. 22, pp. 12288–12300. https://doi.org/10.1021/ic301565p

    Article  CAS  PubMed  Google Scholar 

  7. Bismondo, A., Cassol, A., Di Bernardo, P., Magon, L., and Tomat, G., Inorg. Nucl. Chem. Lett., 1981, vol. 17, nos. 3−4, pp. 79−81. https://doi.org/10.1016/0020-1650(81)80031-1

    Article  CAS  Google Scholar 

  8. Rawat, N., Tomar, B.S., and Manchanda, V.K., J. Chem. Thermodyn., 2011, vol. 43, no. 7, pp. 1023−1027. https://doi.org/10.1016/j.jct.2011.02.007

    Article  CAS  Google Scholar 

  9. Shahandeh, H. and Hossner, L.R., Water Air Soil Pollut., 2002, vol. 141, pp. 165–180. https://doi.org/10.1023/A:1021346828490

    Article  CAS  Google Scholar 

  10. Lauria, D.C., Almeida, R.M.R., and Sracek, O., Brazil. Environ Geol., 2004, vol. 47, pp. 11–19. https://doi.org/10.1007/s00254-004-1121-1

    Article  CAS  Google Scholar 

  11. Véra-Tome, F., Rodriguez, P.B., and Lozano, C.J., Sci. Total Environ., 2008, vol. 393, pp. 351–357. https://doi.org/10.1016/j.scitotenv.2008.01.013

    Article  CAS  Google Scholar 

  12. Véra-Tome, F., Rodriguez, P.B., and Lozano, J.C., Chemosphere, 2009, vol. 74, pp. 293–300. https://doi.org/10.1016/j.chemosphere.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  13. Ebbs, S.D., Brady, D.J., and Kochian, L.V., J. Exp. Botany, 1998, vol. 49, no. 324, pp. 1183–1190. https://doi.org/10.1093/jxb/49.324.1183

    Article  CAS  Google Scholar 

  14. Straczek, A., Duquene, L., Wegrzynek, D., Chinea-Cano, E., Wannijn, J., Navez, J., and Vandenhovea, H., J. Environ. Radioact., 2010, vol. 101, pp. 258–266. https://doi.org/10.1016/j.jenvrad.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  15. Dufey, J.E., Genon, J.G., Jaillard, B., Calba, H., Rufyikiri, G., and Delvaux, B., Fate of Trace Elements in the Rhizosphere, Gobran, G.R., Wenzel, W.W., and Lombi, E., Eds., Boca Raton, Florida: CRC, 2001.

    Google Scholar 

  16. Mathew, K.J., Bürger, S., Vogt, S., Mason, P., Morales-Arteaga, M.E., and Narayanan, U.I., J. Radioanal. Nucl. Chem., 2009, vol. 282, no. 3, pp. 939–944. https://doi.org/10.1007/s10967-009-0186-4

    Article  CAS  Google Scholar 

  17. Shapiro, L. and Brannock, N.W., US Geol. Surv. Bull., 1962, vol. 114A, p. 65. https://researchgate.net/publication/302558799.

    Google Scholar 

  18. Sciban, M., Kalasnja, M., and Skrbic, B., J. Hazard. Mater., 2006, vol. 136, no. 2, pp. 266–271.

    Article  CAS  Google Scholar 

  19. Gaikwad, R.W., Agric. Food Chem., 2004, vol. 3, no. 4, pp. 702–709.

    Google Scholar 

  20. El-Sheikh, E.M., El Aassy, I.E., Abdel-Rahman, A.H., Ayad, M.I., Fathy, W.M., Taha, M.N., and Kassab, W.A., Int. J. Adv. Res., 2017, vol. 5, no. 12, pp. 1445–1459. https://doi.org/10.21474/IJAR01/6105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Abdelhakim.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhakim, A.M., Mohamed, I.R., Awad, E.A.M. et al. Recovery of Uranium from Sulfate Leach Liquor Using Natural Orange Peel Extractant. Radiochemistry 63, 316–324 (2021). https://doi.org/10.1134/S1066362221030097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362221030097

Keywords:

Navigation