Skip to main content
Log in

Low temperature sintering of (Ba0.85Ca0.15) (Ti0.90Zr0.10)O3 lead-free piezoceramic with the additive of MnO2

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Lead-free (Ba0.85Ca0.15) (Ti0.90Zr0.10)O3 (15/10 BCZT) piezoelectric ceramics were prepared by a standard solid solution and sintered at different temperature of 1300 °C and 1500 °C at a time. The 15/10BCZT piezoceramics were prepared at 1300 °C sintering temperature by doping different amount of MnO2.The ceramics show a phase transition from a freoelectric tetragonal phase to a rhombohedral and tetragonal ferroelctric phase and to a single rhombohedral phase with increasing MnO2 content. The addition of MnO2 significantly improves the sinterbility of the 15/10BCZT piezoceramics, and reducing the sintering temperature from 1500 °C to 1300 °C by 200 °C but showing comparable piezoelectric properties. With 0.4 mol% of the dopant, ∼96.5% of the theoretical density of the ceramics was achieved with excellent piezoelectric coefficient d33 ~ 534pC/N, which is nearly equal to the value obtained from the ceramics sintered at 1500 °C which has a piezoelectric coefficient d33 ~ 570pC/N, high density (~ 5.59 g/cm3), maximum remnant polarization (Pr = 24 μC/cm2), relatively large grain size (10.4 μm) and the least coercieve field (Ec = 0.42 kV/mm). However, a high concentration of MnO2 deterioated the properties of the ceramics because of increasing of oxygen vacancies and associated defects. The results indicate that the BCTZ-y mol% MnO2 ceramics are one of the promising lead-free piezoelectric candidates for high temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article.

References

  1. W. Li, J.X. Zhi, Q.C. Rui, F. Peng, Z.Z. Guo, Enhanced ferroelectric properties in (Ba1-xCax)(Ti0.94Sn0.06)O3 lead-free ceramics. J. Eur. Ceram. Soc. 32, 517–520 (2012)

    Article  CAS  Google Scholar 

  2. W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-freeceramics. Phys. Rev. Lett. 103(25), 257602 (2009)

    Article  CAS  Google Scholar 

  3. J.G. Wu, D.Q. Xiao, W.J. Wu, J.G. Zhu, J. Wang, Effectofdwelltime during sintering on piezoelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics. J. Alloys Compd. 509, L359–L361 (2011)

    Article  CAS  Google Scholar 

  4. M. Tanmoy, R. Guo, A.S. Bhalla, Structure–property phase diagram of BaZrxTi1-xO3 system. J.Am.Ceram.Soc. 91, 1769–1780 (2008)

    Article  CAS  Google Scholar 

  5. F. Mouraa, A.Z. Simoes, B.D. Stojanovic, M.A. Zaghete, E. Longoa, J.A. Varela, Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method. J.Alloys Compd. 462(1-2), 129–134 (2008)

    Article  CAS  Google Scholar 

  6. W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, Dielectric and piezoelectric properties of Ba(ZrxTi1-x)O3 lead-free ceramics. Braz. J.Phys. 40(3), 353–356 (2010)

    Article  CAS  Google Scholar 

  7. N. Nanakorn, P. Jalupoom, N. Vaneesorn, A.Thanaboonsom but, Dielec-tric and ferroelectric properties of Ba(ZrxTi1-x)O3 ceramics. Ceram.Int. 34, 779–782 (2008)

    Article  CAS  Google Scholar 

  8. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba (ZrxTi1-x)O3 (0 < x < 0.12) ceramics. Scr.Mater. 61, 68–71 (2009)

  9. W.Q. Cao, J.W. Xiong, J.P. Sun, Dielectric behavior of Nb-doped Ba(ZrxTi1-x)O3. Mater.Chem.Phys. 106(2-3), 338–342 (2007)

    Article  CAS  Google Scholar 

  10. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3 ceramics. Solid State Commun. 131, 163–168 (2004)

    Article  CAS  Google Scholar 

  11. Y.L. Wang, L.T. Li, J.Q. Qi, Z.L. Gui, Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics. Ceram.Int. 28(6), 657–661 (2002)

    Article  CAS  Google Scholar 

  12. P. Zheng, J.L. Zhang, H.B. Qin, K.X. Song, J. Wu, Z.H. Ying, L. Zheng, J.X. Deng, MnO2-modified Ba(Ti,Zr)O3 ceramics with high Qm and good thermal stability. J.Electron.Mater. 42(6), 1154–1157 (2013)

    Article  CAS  Google Scholar 

  13. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London and New York, 1971)

    Google Scholar 

  14. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432(7013), 84–87 (2004)

    Article  CAS  Google Scholar 

  15. J. Rödel, W. Jo, K. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  CAS  Google Scholar 

  16. H. Du, Z. Li, F. Tang, S. Qu, Z. Pei, W. Zhou, Mater. Sci. Eng. B 131, 83 (2006)

    Article  CAS  Google Scholar 

  17. A.K. Menon, B.K. Gupta, Nanotechnology: A data storage perspective. Nanostruct. Mater. 11(8), 965–986 (1999)

    Article  CAS  Google Scholar 

  18. B.K. Lee, Y.I. Jung, S.-J.L. Kang, J. Nowotny, {111} Twin formation and abnormal grain growth in barium strontium titanate. J. Am. Ceram. Soc. 86(1), 155–160 (2003)

    Article  CAS  Google Scholar 

  19. G.H. Haertling, Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Article  CAS  Google Scholar 

  20. R. López-juárez, F. González, M.-E. Villafuerte-Castrejón, in Ferroelectrics – Material Aspects, ed. by M. Lallart. Lead-free ferroelectric ceramics with perovskite structure (In Tech, Rijeka, 2011), pp. 305–330

    Google Scholar 

  21. W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)

    Article  CAS  Google Scholar 

  22. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Piezoelectric and dielectric properties of (Ba1−xCax)(Ti0.95Zr0.05)O3 lead-free ceramics. J. Am. Ceram. Soc. 93(10), 2942–2944 (2010)

    Article  CAS  Google Scholar 

  23. M. Porta, T. Lookman, A. Saxena, Effects of criticality and disorder on piezoelectric properties of ferroelectrics. J. Phys. Condens. Matter 22(34), 345902 (2010)

    Article  CAS  Google Scholar 

  24. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, High piezoelectric d33 coefficient in (Ba1-xCax)(Ti0.98Zr0.02)O3 lead-free ceramics with relative high curie temperature. Mater. Lett. 64(21), 2325–2327 (2010)

    Article  CAS  Google Scholar 

  25. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Polymorphic phase transition and piezoelectric properties of (Ba1-xCax)(Ti0.9Zr0.1)O3 lead-free ceramics. Phys. B Condens. Matter 405(21), 4513–4516 (2010)

    Article  CAS  Google Scholar 

  26. J.G. Wu, D.Q. Xiao, W.J. Wu, Q. Chen, J.G. Zhu, Z.C. Yang, J. Wang, J. Eur. Ceram. Soc. 32(4), 891–898 (2012)

    Article  CAS  Google Scholar 

  27. M.C. Ehmke, F.H. Schader, K.G. Webber, J. Rodel, J.E. Blendell, K.J. Bowman, Acta Mater. 78, 37–45 (2014)

    Article  CAS  Google Scholar 

  28. C.Y. Chang, H.I. Ho, T.Y. Hsieh, C.Y. Huang, Y.C. Wu, Ceram. Int. 39(7), 8245–8251 (2013)

    Article  CAS  Google Scholar 

  29. J.G. Wu, A. Habibul, X.J. Cheng, X.P. Wang, B.Y. Zhang, Mater. Res. Bull. 48(10), 4411–4414 (2013)

    Article  CAS  Google Scholar 

  30. J.P. Praveen, K. Kumar, A.R. James, T. Karthik, S. Asthana, D. Das, Curr. Appl. Phys. 14(3), 396–402 (2014)

    Article  Google Scholar 

  31. M. Tanmoy, R. Guo, A.S. Bhalla, Structure–property phasediagramof BaZrxTi1_xO3 system. J.Am.Ceram.Soc. 91, 1769–1780 (2008)

    Article  CAS  Google Scholar 

  32. F. Mouraa, A.Z. Simoes, B.D. Stojanovic, M.A. Zaghete, E. Longoa, J.A. Varela, Dielectric and ferroelectric characteristics of bariumzirco-nate titanate ceramics prepared from mixed oxide method. J.Alloys Compd. 462(1-2), 129–134 (2008)

    Article  CAS  Google Scholar 

  33. W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, Dielectric and piezoelectric properties of Ba(ZrxTi1_x)O3 lead-freeceramics. Braz.J.Phys. 40, 353–356 (2010)

    Article  CAS  Google Scholar 

  34. N. Nanakorn, P. Jalupoom, N. Vaneesorn, A.Thanaboonsom but, Dielectric and ferroelectric properties of Ba(ZrxTi1_x)O3 ceramics. Ceram.Int. 34, 779–782 (2008)

    Article  CAS  Google Scholar 

  35. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba (ZrxTi1-x)O3 (0≤x≤0.12) ceramics. Scr.Mater. 61, 68–71 (2009)

    Article  CAS  Google Scholar 

  36. X.J. Chou, J.W. Zhai, X. Yao, Relaxor behavior and dielectric properties of MgTiO3-doped BaZr0.35Ti0.65O3 composite ceramics for tunable applications. J.Am.Ceram.Soc. 90, 2799–2801 (2007)

    Article  CAS  Google Scholar 

  37. C. Ciomaga, M. Viviani, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, Preparation and characterization of the Ba(Zr,Ti)O3 ceramics with relaxor properties. J.Eur.Ceram.Soc. 27(13-15), 4061–4064 (2007)

    Article  CAS  Google Scholar 

  38. T. Maiti, E. Alberta, R. Guo, A.S. Bhalla, ThePolarClusterlike Behavior inTi4þ Substituted BaZrO3Ceramics. Matter.Lett. 60, 3861–3865 (2006)

    Article  CAS  Google Scholar 

  39. P. Wang, Y. Li, Y. Lu, J. Eur. Ceram. Soc. 31(11), 2005–2012 (2011)

    Article  CAS  Google Scholar 

  40. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Am. Ceram. Soc. 94(12), 4131–4133 (2011)

    Article  CAS  Google Scholar 

  41. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Eur. Ceram. Soc. 32(3), 517–520 (2012)

    Article  CAS  Google Scholar 

  42. L. Zhao, B.-P. Zhang, P.-F. Zhou, L.-F. Zhu, J.-F. Li, J. Eur. Ceram. Soc. 35(2), 533–540 (2015)

    Article  CAS  Google Scholar 

  43. L. Zhao, B.-P. Zhang, P.-F. Zhou, X.-K. Zhao, L.-F. Zhu, J. Am. Ceram. Soc. 97(7), 2164–2169 (2014)

    Article  CAS  Google Scholar 

  44. P.-F. Zhou, B.-P. Zhang, L. Zhao, X.-K. Zhao, L.-F. Zhu, L.-Q. Cheng, Appl. Phys. Lett. 103(17), 172904 (2013)

    Article  CAS  Google Scholar 

  45. P.-F. Zhou, B.-P. Zhang, L. Zhao, L.-F. Zhu, Ceram. Int. 41(3), 4035–4041 (2015)

    Article  CAS  Google Scholar 

  46. Q. Chen, T. Wang, J. Wu, X. Cheng, X. Wang, B. Zhang, J. Electroceram. 32(2-3), 175–179 (2014)

    Article  CAS  Google Scholar 

  47. Y.R. Cui, X.Y. Liu, M.H. Jiang, Y.B. Hu, Q.S. Su, H. Wang, J. Mater. Sci. Mater. Electron. 23, 1342 (2012)

    Article  CAS  Google Scholar 

  48. W. Lin, L.L. Fan, D.M. Lin, Q.J. Zheng, X.M. Fan, H.L. Sun, Curr. Appl. Phys. 13, 469 (2013)

    Article  Google Scholar 

  49. P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan, C.L. Wang, Appl. Phys. Lett. 94(3), 032902 (2009)

    Article  CAS  Google Scholar 

  50. T. Chen, T. Zhang, G.C. Wang, J.F. Zhou, J.W. Zhang, Y.H. Liu, J. Mater. Sci. 47(11), 4612–4619 (2012)

    Article  CAS  Google Scholar 

  51. J. Hao, W. Bai, W. Li, H.T.M. JiweiZhai, J.C. Burfoot, Grain-Size Effects on Properties of Some Ferroelectric Ceramics. J. Phys. C: Solid State Phys. 7, 3182–3192 (1974)

    Article  Google Scholar 

  52. H. Du, Z. Li, F. Tang, S. Qu, Z. Pei, W. Zhou, Preparation and Piezoelectric Properties of (K0.5Na0.5)NbO3 Lead-free Piezoelectric Ceramics with Pressure-less. Sinter. Mater. Sci. Eng. B 131, 83–87 (2006)

    Article  CAS  Google Scholar 

  53. E. Li, H. Kakemoto, S. Wada, T. Tsurumi, Influence of CuO on the Structure and Piezoelectric Properties of Alkaline Niobate-Based Lead-Free Ceramics. J. Am. Ceramic Soc. 90(6), 1787–1791 (2007)

    Article  CAS  Google Scholar 

  54. B. Malic, J. Bernard, J. Holc, D. Jenko, M. Kosec, Alkaline-Earth Doping in (K,Na)NbO3 Based Piezoceramics. J. Eur. Ceramic Soc. 25, 2707–2711 (2005)

    Article  CAS  Google Scholar 

  55. S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and Pyroelectric Properties of ZnO-Added (Na0.5K0.5)NbO3 Ceramics Japanese. J. Appl. Phys. 43(8B), 1072–1074 (2004)

    Article  CAS  Google Scholar 

  56. Y. Hou, M. Zhu, F. Gao, H. Wang, B. Wang, H. Yan, C. Tian, J. Am. Ceram. Soc. 87(5), 847–850 (2004)

    Article  CAS  Google Scholar 

  57. M. Dambekalne, M. Antonova, M. Livinsh, A. Kalvane, A. Mishnov, I. Smeltere, R. Krutohvostov, K. Bormanis, A. Sternberg, Synthesis and Characterization of Sbsubstituted (K0.5Na0.5)NbO3 Piezoelectric Ceramics. Integrated Ferroelect. 102, 52–61 (2008)

    Article  CAS  Google Scholar 

  58. S. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wanag, Characterization of Lead-free (K0.5Na0.5)NbO3 – LiSbO3 Piezoceramic. Solid State Commun. 141, 675–679 (2007)

    Article  CAS  Google Scholar 

  59. F. Rubio-Marcos, P. Ochoa, J.F. Fernandez, Sintering and Properties of Lead-free (K,Na,Li)(Nb,Ta,Sb)O3. J. Eur. Ceramic Soc. 27, 4125–4129 (2007)

    Article  CAS  Google Scholar 

  60. M. Jiang, Q. Lin, D. Lin, Q. Zheng, X. Fan, X. Wu, H. Sun, Y. Wan, L. Wu, J Mater Sci 48, 1035–1041 (2013)

    Article  CAS  Google Scholar 

  61. S. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, E.F. Alberta, Appl. Phys. Lett. 86(26), 262904 (2005)

    Article  CAS  Google Scholar 

  62. R.S. Nasar, M. Cerqueira, E. Longo, J.A. Varela, A. Beltran, J. Eur. Ceram. Soc. 22(2), 209–218 (2002)

    Article  CAS  Google Scholar 

  63. R. Eitel, C.A. Randall, Phys. Rev. B 75(9), 094106 (2007)

    Article  CAS  Google Scholar 

  64. K. Kinoshita, A. Yamaji, Grain-size effects on dielectric properties in barium titanate-ceramics. J.Appl.Phys. 47, 371 (1976)

    Article  CAS  Google Scholar 

  65. H. Orihara, S. Hashimoto, Y. Ishibashi, A theory of D-E hysteresis loop based on the Avrami model. J. Phys. Soc. Jpn. 63(3), 1031–1035 (1994)

    Article  CAS  Google Scholar 

  66. J. Hao, W. Bai, W. Li, J. Zhai, J. Am. Ceram. Soc. 95(6), 1998–2006 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mulualem Abebe acknowledges the Department of Materials Science and Engineering, Indian Institute of Science for financial assistance to the research. Mesfin Zewdu and Mulualem Abebe gratefully acknowledges the Department of Materials Science and Engineering, Jimma Institute of Technology for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulualem Abebe Mekonnen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekonnen, M.A., Tadesse, M.Z. Low temperature sintering of (Ba0.85Ca0.15) (Ti0.90Zr0.10)O3 lead-free piezoceramic with the additive of MnO2. J Electroceram 46, 115–123 (2021). https://doi.org/10.1007/s10832-021-00250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00250-x

Keywords

Navigation