Skip to main content
Log in

On the Time-Dependent Delta-Shock Model Governed by the Generalized PóLya Process

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

One of the widely discussed in the literature and relevant in practice shock models is the delta-shock model that is described by the constant time of a system’s recovery after a shock. However, in practice, as time progresses and due to deterioration of a system, this recovery time is gradually increasing. This important phenomenon was not discussed in the literature so far. Therefore, in this paper, we are considering a time-dependent delta-shock model, i.e., the recovery time becomes an increasing function of time. Moreover, we assume that shocks occur according to the generalized Pólya process that contains the homogeneous Poisson process, the non-homogeneous Poisson process and the Pólya process as particular cases. For the defined survival model, we derive the corresponding survival function and the mean lifetime and study the related optimal replacement policy along with some relevant stochastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • A-Hameed MS, Proschan F (1973) Nonstationary shock models. Stoch Process Appl 1(4):383–404

    Article  MathSciNet  Google Scholar 

  • Beichelt F (2006) Stochastic processes in science, engineering and finance. Boca Raton, CRC Press

    Book  Google Scholar 

  • Cha JH (2014) Characterization of the generalized pólya process and its applications. Adv Appl Probab 46(4):1148–1171

    Article  MathSciNet  Google Scholar 

  • Cha JH, Finkelstein M (2016) New shock models based on the generalized pólya process. Eur J Oper Res 251(1):135–141

    Article  Google Scholar 

  • Cha JH, Finkelstein M (2018) Point processes for reliability analysis. In shocks and repairable systems. Springer, London

    Book  Google Scholar 

  • Eryılmaz S (2012a) Generalized δ-shock model via runs. Stat Probab Lett 82(2):326–331

    Article  MathSciNet  Google Scholar 

  • Eryılmaz S (2012b) Life behavior of a system under discrete shock model. Discret Dyn Nat Soc 2012 :238641

    Article  MathSciNet  Google Scholar 

  • Eryilmaz S (2017) δ-shock model based on Pólya process and its optimal replacement policy. European J Oper Res 263(2):690–697

    Article  MathSciNet  Google Scholar 

  • Eryilmaz S, Bayramoglu K (2014) Life behavior of δ-shock models for uniformly distributed interarrival times. Stat Pap 55(3):841–852

    Article  MathSciNet  Google Scholar 

  • Esary JD, Marshall AW, Proschan F (1973) Shock models and wear processes. Ann Probab 627–649

  • Finkelstein M, Cha JH (2013) Stochastic modeling for reliability. In: Shocks, burn-in and heterogeneous populations. Springer, London

  • Gut A (1990) Cumulative shock models. Adv Appl Probab 22 (2):504–507

    Article  MathSciNet  Google Scholar 

  • Gut A, Hüsler J (1999) Extreme shock models. Extremes 2 (3):295–307

    Article  MathSciNet  Google Scholar 

  • Gut A, Hüsler J (2005) Realistic variation of shock models. Stat Probab Lett 74(2):187–204

    Article  MathSciNet  Google Scholar 

  • Jiang Y (2020) A new δ-shock model for systems subject to multiple failure types and its optimal order-replacement policy. Proc Instit Mechan Eng Part O J Risk Reliabil 234(1):138–150

    Google Scholar 

  • Konno H (2010) On the exact solution of a generalized pólya process. Adv Math Phys 2010:504267

    Article  Google Scholar 

  • Kus C, Tuncel A, Eryilmaz S (2021) Assessment of shock models for a particular class of intershock time distributions. Methodol Comput Appl Probab 1–19

  • Lam Y, Zhang YL (2004) A shock model for the maintenance problem of a repairable system. Comput Oper Res 31(11):1807–1820

    Article  MathSciNet  Google Scholar 

  • Li Z, Chan LY, Yuan Z (1999a) Failure time distribution under a δ-shock model and its application to economic design of systems. Int J Reliabil Quality Safety Eng 6(03):237–247

    Article  Google Scholar 

  • Li ZH, Huang BS, Wang GJ (1999b) Life distribution and its properties of shock models under random shocks. J Lanzhou Univ 35(4):1–7

    MathSciNet  Google Scholar 

  • Li Z, Kong X (2007) Life behavior of δ-shock model. Stat Probab Lett 77(6):577–587

    Article  MathSciNet  Google Scholar 

  • Li Z, Zhao P (2007) Reliability analysis on the δ-shock model of complex systems. IEEE Trans Reliab 56(2):340–348

    Article  MathSciNet  Google Scholar 

  • Lorvand H, Poursaeed MH, Nematollahi AR (2020a) On the life distribution behavior of the generalized mixed delta-shock models for the multi-state systems. In: Iranian journal of science and technology transactions A: Science, pp 1–12

  • Lorvand H, Nematollahi A, Poursaeed MH (2020b) Life distribution properties of a new δ-shock model. Commun Stat -Theor Methods 49(12):3010–3025

    Article  MathSciNet  Google Scholar 

  • Ma M, Li Z (2010) Life behavior of censored δ-shock model. Indian J Pure Appl Math 41(2):401–420

    Article  MathSciNet  Google Scholar 

  • Mallor F, Omey E (2001) Shocks, runs and random sums. J Appl Probab 438–448

  • Ozkut M, Eryilmaz S (2019) Reliability analysis under Marshall-Olkin run shock model. J Comput Appl Math 349:52–59

    Article  MathSciNet  Google Scholar 

  • Parvardeh A, Balakrishnan N (2015) On mixed δ-shock models. Stat Probab Lett 102:51–60

    Article  MathSciNet  Google Scholar 

  • Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer, New York

    Book  Google Scholar 

  • Shanthikumar JG, Sumita U (1983) General shock models associated with correlated renewal sequences. J Appl Probab 20:600–614

    Article  MathSciNet  Google Scholar 

  • Shanthikumar JG, Sumita U (1984) Distribution properties of the system failure time in a general shock model. Adv Appl Probab 16(2):363–377

    Article  MathSciNet  Google Scholar 

  • Tang YY, Lam Y (2006) A δ-shock maintenance model for a deteriorating system. Eur J Oper Res 168 (2):541–556

    Article  MathSciNet  Google Scholar 

  • Teugels JL, Vynckier P (1996) The structure distribution in a mixed Poisson process. J Appl Math Stoch Anal 9(4):489–496

    Article  MathSciNet  Google Scholar 

  • Tuncel A, Eryilmaz S (2018) System reliability under δ-shock model. Commun Stat-Theor Methods 47(19):4872–4880

    Article  MathSciNet  Google Scholar 

  • Wang GJ, Peng R (2017) A generalised δ-shock model with two types of shocks. Int J Syst Sci Oper Logist 4(4):372–383

    Google Scholar 

  • Wang GJ, Zhang YL (2001) δ-shock model and its optimal replacement policy. J Southeast Univ 31(5):121–124

    MathSciNet  MATH  Google Scholar 

  • Wang GJ, Zhang YL (2005) A shock model with two-type failures and optimal replacement policy. Int J Syst Sci 36(4):209–214

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Editor-in-Chief, the Associate Editor and the anonymous Reviewers for their valuable constructive comments/suggestions which lead to an improved version of the manuscript. The first author sincerely acknowledges the financial support received from UGC, Govt. of India. The work of the second author was supported by IIT Jodhpur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Finkelstein.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 3.1

Note that

$$ \bar F_{L}(t)=P(L > t ) = P(L > t , N(t) = 0) + \sum\limits_{m = 1}^{\infty} P(L > t , N(t) = m). $$
(A1)

Now, it is easy to verify that

$$ P(L > t , N(t) = 0) = \exp \{ - \beta {\Lambda}(t) \}. $$
(A2)

Further, note that the system survives n shocks in [0, t) provided \(X_{1} > \delta _{0},X_{2} > \delta (T_{1}), \dots ,\) Xn > δ(Tn− 1), or equivalently, \(T_{1} > \delta _{0} , T_{2} > T_{1} + \delta (T_{1}), \dots ,T_{n} > T_{n-1}+\delta (T_{n-1})\). As g(t) = t + δ(t), this condition can equivalently be written as \(T_{1} > \delta _{0} , T_{2} > g(T_{1}),\dots ,T_{n} > g(T_{n-1})\). Further, this implies that t > Tn > gn− 1(δ0) as g(⋅) is a strictly increasing continuous function. This means that the probability of the event “the system survives n shocks till time t” is zero, for tgn− 1(δ0). Now, for 1 ≤ mM0(t), we can write

$$ P(L > t , N(t) = m) = P(L > t | N(t) = m) P(N(t) = m) . $$
(A3)

Now, consider

$$ \begin{array}{@{}rcl@{}} && P(L > t | N(t) = m) \\ & &= P(X_{1} > \delta_{0}, X_{2} > \delta(T_{1}),\dots,X_{m} > \delta(T_{m-1}) | N(t) = m) \\ && = P(T_{1} > \delta_{0}, T_{2} > T_{1} + \delta(T_{1}),\dots,T_{m} > T_{m-1}+\delta(T_{m-1}) | N(t) = m) \\ && = P(T_{1} > \delta_{0}, T_{2} > g(T_{1}),\dots,T_{m} > g(T_{m-1}) | N(t) = m) \\ & & = {\int}_{g^{m-1}(\delta_{0})}^{t} {\int}_{g^{m-2}(\delta_{0})}^{g^{-1}(t_{m})} {\dots} {\int}_{g(\delta_{0})}^{g^{-1}(t_{3})} {\int}_{\delta_{0}}^{g^{-1}(t_{2})} f_{(T_{1},T_{2},\dots, T_{N(t)} | N(t))}(t_{1},t_{2},\dots,t_{m-1}t_{m} | m) \\&& \times dt_{1} dt_{2} {\dots} dt_{m-1}dt_{m} \\ && = \frac{m !}{ \left( \exp{ \{ \alpha {\Lambda}(t) \} } - 1\right)^{m}} {\int}_{g^{m-1}(\delta_{0})}^{t} {\int}_{g^{m-2}(\delta_{0})}^{g^{-1}(t_{m})} {\dots} {\int}_{g(\delta_{0})}^{g^{-1}(t_{3})} {\int}_{\delta_{0}}^{g^{-1}(t_{2})} \left (\prod\limits_{i = 1}^{m} \alpha \lambda(t_{i}) \exp \{ \alpha {\Lambda}(t_{i}) \} \right) \\&& \times dt_{1} dt_{2} {\dots} dt_{m-1} dt_{m}, \end{array} $$

where the last equality follows from Lemma 3.1(b). On using the above expression together with Lemma 3.1(a) in Eq. A3, we get

$$ \begin{array}{@{}rcl@{}} &&\!\!\!\!\!P(L > t,N(t) = m) \\ & &\!\!\!\!\!= \frac{\Gamma\left( \frac{\beta}{\alpha} + m\right)}{\Gamma\left( \frac{\beta}{\alpha}\right) m!} (1 - exp \{ - \alpha {\Lambda}(t) \} )^{m} (exp \{ - \alpha {\Lambda}(t)\})^{\frac{\beta}{\alpha}} \frac{m !}{ \left( \exp{ \{ \alpha {\Lambda}(t) \} } - 1\right)^{m}} \\ &&\!\times {\int}_{g^{m-1}(\delta_{0})}^{t} {\int}_{g^{m-2}(\delta_{0})}^{g^{-1}(t_{m})} {\dots} {\int}_{g(\delta_{0})}^{g^{-1}(t_{3})} {\int}_{\delta_{0}}^{g^{-1}(t_{2})} \left (\prod\limits_{i = 1}^{m} \alpha \lambda(t_{i}) \exp \{ \alpha {\Lambda}(t_{i}) \} \right) dt_{1} dt_{2} {\dots} dt_{m-1} dt_{m} \\ && \!\!\!\!\!= \exp \{ - \beta {\Lambda}(t)\} \frac{\Gamma\left( \frac{\beta}{\alpha} + m\right)}{\Gamma\left( \frac{\beta}{\alpha}\right)} \frac{1}{ (\exp{ \{\alpha {\Lambda}(t)\})^{m}} } \\ && \!\times {\int}_{g^{m-1}(\delta_{0})}^{t} {\int}_{g^{m-2}(\delta_{0})}^{g^{-1}(t_{m})} {\dots} {\int}_{g(\delta_{0})}^{g^{-1}(t_{3})} {\int}_{\delta_{0}}^{g^{-1}(t_{2})} \left( \prod\limits_{i = 1}^{m} \alpha \lambda(t_{i}) \exp \{ \alpha {\Lambda}(t_{i}) \} \right) dt_{1} dt_{2} {\dots} dt_{m-1}dt_{m}. \\ && \end{array} $$
(A4)

Finally, on using Eqs. A2 and A4 in A1, we get the result. □

Proof of Corollary 3.1

Since δ(t) = δ0 + γt, we have g(t) = (1 + γ)t + δ0 and \(g^{-1}(t) = \frac {t - \delta _{0}}{(1 + \gamma )} \). Then

$$ \begin{array}{@{}rcl@{}} M_{0}(t) & =& max\{ n \geq 1 | g^{n-1}(\delta_{0}) < t \} \\ & =& max\{ n \geq 1 | \delta_{0} + (1 + \gamma) \delta_{0} + {\dots} + (1+\gamma)^{n-1} \delta_{0} < t \}\\ & =& max\{ n \geq 1 | \delta_{0}\left( \frac{ ((1 + \gamma )^{n} - 1) }{\gamma} \right) < t \} \\ & =& \left\lfloor \frac{\ln{ \left( \frac{ \delta_{0} + t \gamma }{\delta_{0} } \right) }}{ \ln{(1 + \gamma) }} \right\rfloor=N_{0}(t). \end{array} $$
(A5)

Now, consider the following integral.

$$ \begin{array}{@{}rcl@{}} B(t)&\underset{=}{\text{def}}& {\int}_{g^{m-1}(\delta_{0})}^{t} {\int}_{g^{m-2}(\delta_{0})}^{g^{-1}(t_{m})} \dots{\int}_{g(\delta_{0})}^{g^{-1}(t_{3})} {\int}_{\delta_{0}}^{g^{-1}(t_{2})}\left (\prod\limits_{i = 1}^{m} \alpha \lambda(t_{i}) \exp \{ \alpha {\Lambda}(t_{i}) \} \right) dt_{1} dt_{2} {\dots} dt_{m-1} dt_{m} \\ & = & {\int}_{\delta_{0} + (1 + \gamma) \delta_{0} + \cdot \cdot \cdot + (1+\gamma)^{m-1} \delta_{0}}^{t} {\int}_{\delta_{0} + (1 + \gamma) \delta_{0} + {\dots} + (1+\gamma)^{m-2} \delta_{0}}^{\frac{t_{m} - \delta_{0}}{1 + \gamma}} \cdot \cdot \cdot {\int}_{(2 + \gamma) \delta_{0}}^{\frac{t_{3} - \delta_{0}}{1 + \gamma}} {\int}_{\delta_{0}}^{\frac{t_{2} - \delta_{0}}{1 + \gamma}} \left( \frac{\alpha}{b}\right)^{m} \\ &&\times dt_{1} dt_{2} {\dots} dt_{m-1} dt_{m} \\ &=&{\int}_{\frac{ (1+\gamma)^{m} -1 }{\gamma} \delta_{0}}^{t}{\int}_{\frac{ (1+\gamma)^{m-1} -1 }{\gamma} \delta_{0}}^{\frac{t_{m} - \delta_{0}}{1+\gamma}} {\dots} {\int}_{(2 + \gamma) \delta_{0}}^{\frac{t_{3} - \delta_{0}}{1 + \gamma}} {\int}_{\delta_{0}}^{\frac{t_{2} - \delta_{0}}{1 + \gamma}} \left( \frac{\alpha}{b} \right)^{m} dt_{1} dt_{2} {\dots} dt_{m-1} dt_{m}. \end{array} $$
(A6)

We solve the above integration by iterative process. Note that

$$ \begin{array}{@{}rcl@{}} {\int}_{(2+\gamma)\delta_{0}}^{\frac{t_{3} - \delta_{0}}{1 + \gamma}} {\int}_{\delta_{0}}^{\frac{t_{2} - \delta_{0}}{1 + \gamma}} \left( \frac{\alpha}{b}\right)^{2} dt_{1} dt_{2} & = &\left( \frac{\alpha}{b}\right)^{2} {\int}_{(2+\gamma)\delta_{0}}^{\frac{t_{3} - \delta_{0}}{1 + \gamma}} \left( \frac{t_{2} - (2+\gamma)\delta_{0}}{1 +\gamma} \right) dt_{2} \\ & =& \frac{\alpha^{2}}{b^{2}(1+\gamma)^{1+2}} \frac{ \left[ t_{3} - (\delta_{0} + (1+\gamma) \delta_{0} + (1+\gamma)^{2} \delta_{0} ) \right]^{2} }{2} . \end{array} $$

By proceeding in a similar manner, we get

$$ \begin{array}{@{}rcl@{}} && {\int}_{\frac{ (1+\gamma)^{m-1} -1 }{\gamma} \delta_{0}}^{\frac{t_{m} - \delta_{0}}{1 + \gamma}} {\dots} {\int}_{(2 + \gamma) \delta_{0}}^{\frac{t_{3} - \delta_{0}}{1 + \gamma}} {\int}_{\delta_{0}}^{\frac{t_{2} - \delta_{0}}{1 + \gamma}} \left( \frac{\alpha}{b} \right)^{m} dt_{1} dt_{2} {\dots} dt_{m-1} \\ && = \frac{\alpha^{m}}{ b^{m}(1+\gamma)^{1+2+{\dots} +(m-1)} } \frac{ \left\{ t_{m} - (\delta_{0} + (1 + \gamma) \delta_{0} + {\dots} + (1+\gamma)^{m-1} \delta_{0}) \right\}^{(m-1)}}{(m-1) !} \\ && = \frac{\alpha^{m}}{ b^{m}(m-1) !(1+\gamma)^{\frac{m(m-1)}{2}} } \left[t_{m} - \left( \frac{ (1 + \gamma )^{m} - 1 }{\gamma} \right) \delta_{0} \right]^{(m-1)}. \end{array} $$
(A7)

On using Eqs. A7 in A6, we get

$$ \begin{array}{@{}rcl@{}} B(t) &= &\frac{\alpha^{m}}{ b^{m}(m-1) !(1+\gamma)^{\frac{m(m-1)}{2}} } {\int}_{\left( \frac{ (1 + \gamma )^{m} - 1 }{\gamma} \right) \delta_{0}}^{t} \left[t_{m} - \left( \frac{ (1 + \gamma )^{m} - 1 }{\gamma} \right) \delta_{0} \right]^{(m-1)} dt_{m} \\ & = & \frac{ \alpha^{m} }{ b^{m} m! (1+\gamma)^{\frac{m(m-1)}{2}}}\left[ t - \left( \frac{ (1 + \gamma )^{m} - 1 }{\gamma} \right) \delta_{0} \right]^{m}. \end{array} $$
(A8)

Finally, the result follows from Theorem 3.1 by using Eqs. A5 and A8. □

Proof of Theorem 3.2

Note that

$$ \begin{array}{@{}rcl@{}} E(L) & =& {\int}_{0}^{\infty} P(L>t) dt \\ & =& {\int}_{0}^{\delta_{0}} P(L>t) dt + {\int}_{\delta_{0}}^{g(\delta_{0})} P(L>t) dt + {\int}_{g(\delta_{0})}^{g^{2}(\delta_{0})} P(L>t) dt+\dots\\ & =& {\int}_{0}^{\delta_{0}} P(L >t, N(t) = 0) dt + {\int}_{\delta_{0}}^{g(\delta_{0})} \left[ P(L >t, N(t) = 0) + P(L >t, N(t) = 1) \right] dt \\ && + {\int}_{g(\delta_{0})}^{g^{2}(\delta_{0})} \left[ P(L >t, N(t) = 0) + P(L >t, N(t) = 1)+ P(L >t, N(t) = 2) \right] dt + {\dots} \\&=&\left( {\int}_{0}^{\delta_{0}} P(L >t, N(t) = 0) dt +{\int}_{\delta_{0}}^{g(\delta_{0})} P(L >t, N(t) = 0) dt+\dots\right) \\&&+\left( {\int}_{\delta_{0}}^{g(\delta_{0})} P(L >t, N(t) = 1) dt+{\int}_{g(\delta_{0})}^{g^{2}(\delta_{0})} P(L >t, N(t) = 1) dt+\dots\right) +\dots \\ & = &{\int}_{0}^{\infty} P(L >t, N(t) = 0) dt + {\int}_{\delta_{0}}^{\infty} P(L >t, N(t) = 1) dt + \dots \\ & =& {\int}_{0}^{\infty} P(L >t, N(t) = 0) dt + \sum\limits_{m = 1}^{\infty} {\int}_{g^{m-1}(\delta_{0})}^{\infty} P(L >t, N(t) = m) dt \end{array} $$
(A9)

On using Eqs. A2 and A4 in the above expression, we get the required result. □

Proof of Corollary 3.2

Since δ(t) = δ0 + γt, we have g(t) = (1 + γ)t + δ0. From Eq. A9, we have

$$ E(L) = \sum\limits_{m = 0}^{\infty} {\int}_{\delta_{0} \left( \frac{(1+ \gamma)^{m} - 1}{\gamma} \right) }^{\infty} P(L >t, N(t) = m) dt . $$
(A10)

Note that, for \( t > \delta _{0}\left (\frac {(1+ \gamma )^{m} - 1}{\gamma } \right ) \),

$$P(L >t, N(t) = m) = \left( \frac{b}{b + \alpha t} \right)^{\frac{\beta}{\alpha}} \frac{\Gamma\left( \frac{\beta}{\alpha} + m\right)}{\Gamma\left( \frac{\beta}{\alpha}\right) m!} \frac{ \alpha^{m} }{ (1+\gamma)^{\frac{m(m-1)}{2}} } \left[ \frac{ t - \left( \frac{ (1 + \gamma )^{m} - 1 }{\gamma} \right) \delta_{0} }{ \alpha t + b} \right]^{m}.$$

On using the above expression in Eq. A10, we get

$$ \begin{array}{@{}rcl@{}} E(L) \!& = &\! \sum\limits_{m = 0}^{\infty} {\int}_{\delta_{0} \left( \frac{(1+ \gamma)^{m} - 1}{\gamma} \right) }^{\infty}\left[ \left( \frac{b}{b + \alpha t} \right)^{\frac{\beta}{\alpha}} \frac{\Gamma\left( \frac{\beta}{\alpha} + m\right)}{\Gamma\left( \frac{\beta}{\alpha}\right) m!} \frac{ \alpha^{m} }{ (1+\gamma)^{\frac{m(m-1)}{2}} } \left\{ \frac{ t - \left( \frac{ (1 + \gamma )^{m} - 1 }{\gamma} \right) \delta_{0} }{ \alpha t + b} \right\}^{m} \right]dt \\ \!& = &\!\sum\limits_{m = 0}^{\infty} \frac{\Gamma\left( \frac{\beta}{\alpha} + m\right)}{\Gamma\left( \frac{\beta}{\alpha}\right) m!} \frac{ \alpha^{m} }{ (1+\gamma)^{\frac{m(m-1)}{2}} } {\int}_{\delta_{0} \left( \frac{(1+ \gamma)^{m} - 1}{\gamma} \right) }^{\infty} \left( \frac{b}{b + \alpha t} \right)^{\frac{\beta}{\alpha}} \left\{ \frac{ t - \left( \frac{ (1 + \gamma )^{m} - 1 }{\gamma} \right) \delta_{0} }{ \alpha t + b} \right\}^{m} dt \\ \!& = &\!\sum\limits_{m = 0}^{\infty} \frac{\Gamma\left( \frac{\beta}{\alpha} + m\right)}{\Gamma\left( \frac{\beta}{\alpha}\right) m!} \frac{ \alpha^{m} b^{\frac{\beta}{\alpha}}}{ (1 + \gamma)^{\frac{m(m-1)}{2}} } {\int}_{\delta_{0} \left( \frac{(1+ \gamma)^{m} - 1}{\gamma} \right) }^{\infty} \frac{1}{(\alpha t + b)^{\frac{\beta}{\alpha} + m}} \left\{ t - \left( \frac{ (1 + \gamma )^{m} - 1 }{\gamma} \right) \delta_{0} \right\}^{m} dt \end{array} $$
$$ \begin{array}{@{}rcl@{}} & = & \sum\limits_{m = 0}^{\infty} \frac{\Gamma\left( \frac{\beta}{\alpha} + m\right)}{\Gamma\left( \frac{\beta}{\alpha}\right) m!} \frac{ \left( \frac{b}{\alpha}\right)^{\frac{\beta}{\alpha}}}{ (1+\gamma)^{\frac{m(m-1)}{2}} } {\int}_{0}^{\infty} u^{m} \left( \frac{1}{u+\frac{b}{\alpha}+\left( \frac{(1+ \gamma)^{m} - 1}{\gamma} \right)\delta_{0}} \right)^{m + \frac{\beta}{\alpha}} du \\ & = & \sum\limits_{m = 0}^{\infty} \frac{\Gamma\left( \frac{\beta}{\alpha} + m\right)}{\Gamma\left( \frac{\beta}{\alpha}\right) m!} \frac{ \left( \frac{b}{\alpha}\right)^{\frac{\beta}{\alpha}}}{ (1+\gamma)^{\frac{m(m-1)}{2}} \left[ \frac{b}{\alpha} + \left( \frac{(1+ \gamma)^{m} - 1}{\gamma} \right)\delta_{0} \right]^{\frac{\beta}{\alpha} - 1} } {\int}_{0}^{\infty} \frac{x^{m}}{(1+x)^{m+\frac{\beta}{\alpha}}} dx \\&=&\frac{b}{\beta-\alpha} \sum\limits_{m=0}^{\infty} \left[ \frac{b}{ b + \left( \frac{(1+\gamma)^{m} - 1}{\gamma} \right) \alpha \delta_{0}} \right]^{\frac{\beta}{\alpha} - 1} \left[ \frac{1}{ (1+\gamma)^{\frac{m(m-1)}{2}}} \right], \end{array} $$

where the last equality follows from the fact that

$$ {\int}_{0}^{\infty} \frac{x^{m}}{(1+x)^{m+\frac{\beta}{\alpha}}} dx = \frac{\Gamma(m+1) {\Gamma}(\frac{\beta}{\alpha} - 1)}{\Gamma(m+ \frac{\beta}{\alpha})} = \frac{\Gamma(\frac{\beta}{\alpha} ) m!}{(\frac{\beta}{\alpha} -1) {\Gamma}(m+ \frac{\beta}{\alpha}) } . $$

Proof of Proposition 4.1

Note that

$$ \begin{array}{@{}rcl@{}} P(M = m) &=& P(X_{1} > \delta_{0}, X_{2} > \delta(X_{1}), X_{3} > \delta(X_{1} + X_{2} ), {\dots} , X_{m - 1 } \\&>& \delta(X_{1} + X_{2} + {\dots} + X_{m-2}), \\ && X_{m} \leq \delta(X_{1} + X_{2} + {\dots} + X_{m-1} ) )\\ & = & {\int}_{0}^{\infty} P(X_{1} > \delta_{0}, X_{2} > \delta(X_{1}), X_{3} > \delta(X_{1} + X_{2} ), {\dots} , X_{m - 1 } \\&>& \delta(X_{1} + X_{2} + {\dots} + X_{m-2}), \\ && X_{m} \leq \delta(X_{1} + X_{2} + {\dots} + X_{m-1} )|{\Lambda}=\lambda) dH(\lambda)\\ & = & {\int}_{0}^{\infty} P(X_{1} > \delta_{0}, X_{2} > \delta_{0} + \gamma X_{1} , X_{3} > \delta_{0} + \gamma (X_{1} + X_{2}), {\dots} , X_{m - 1 } \!>\! \delta_{0} \\ &&+ \gamma (X_{1} + X_{2} + {\dots} + X_{m-2}), X_{m} \leq \delta_{0} \\&&+ \gamma (X_{1} + X_{2} + {\dots} + X_{m-1} )| {\Lambda}=\lambda) dH(\lambda), \\ \end{array} $$
(A11)

where Λ is a structure random variable with the probability density given by

$$ dH(\lambda) = \frac{\left( \frac{b}{\alpha}\right)^{\frac{\beta}{\alpha}}}{\Gamma\left( \frac{\beta}{\alpha}\right)} \lambda^{\left( \frac{\beta}{\alpha}\right) -1} \exp\left\{ - \left( \frac{b}{\alpha} \right) \lambda \right\} d \lambda. $$
(A12)

This is because the GPP with a set of parameters {λ(t) = 1/(b + αt), α, β} is actually a Pólya process with the parameters set {β/α, b/α} (Cha and Finkelstein 2018). Furthermore, on condition Λ = λ, the Pólya process is the same as the HPP with intensity λ (see Beichelt (2006), p.130). Thus, the conditional probability density function of \((X_{1},X_{2},{\dots } , X_{m})\) given Λ = λ is given by

$$ f_{(X_{1},X_{2},{\dots} , X_{m}| {\Lambda})}(x_{1},x_{2},\dots, x_{m}|\lambda) = \prod\limits_{i = 1}^{m} \lambda \exp\{ - \lambda x_{i} \}, \quad 0 < x_{1},x_{2},\dots, x_{m} < \infty. $$
(A13)

Now, consider

$$ \begin{array}{@{}rcl@{}} &&P(X_{1} > \delta_{0}, X_{2} > \delta_{0} + \gamma X_{1} , X_{3} > \delta_{0} + \gamma (X_{1} + X_{2}), {\dots} , X_{m - 1 } \\&&> \delta_{0} + \gamma (X_{1} + X_{2} + {\dots} + X_{m-2}), \\ &&X_{m} \leq \delta_{0} + \gamma (X_{1} + X_{2} + {\dots} + X_{m-1} )| {\Lambda}=\lambda) \\ && {}= {\int}_{\delta_{0}}^{\infty} {\int}_{\delta_{0} + \gamma x_{1}}^{\infty} {\dots} {\int}_{\delta_{0} + \gamma \cdot (x_{1} + x_{2} + {\dots} + x_{m-2} )}^{\infty} {\int}_{0}^{\delta_{0} + \gamma \cdot (x_{1} + x_{2} + {\dots} + x_{m-1} )} \\&&f_{(X_{1},X_{2},{\dots} , X_{m}| {\Lambda})}(x_{1},x_{2},\dots, x_{m}|\lambda) \\ && dx_{m} dx_{m-1} {\dots} dx_{2} dx_{1} \\ && {}= {\int}_{\delta_{0}}^{\infty} {\int}_{\delta_{0} + \gamma x_{1}}^{\infty} {\dots} {\int}_{\delta_{0} + \gamma \cdot (x_{1} + x_{2} + {\dots} + x_{m-2} )}^{\infty} {\int}_{0}^{\delta_{0} + \gamma \cdot (x_{1} + x_{2} + {\dots} + x_{m-1} )} \\&&\left( \prod\limits_{i = 1}^{m} \lambda \exp\{ - \lambda x_{i} \} \right) dx_{m} dx_{m-1} {\dots} dx_{2} dx_{1} \\ && {}= \frac{ \exp \left\{ - \lambda \delta_{0} \left( \frac{(1 + \gamma )^{(m-1)} - 1}{\gamma} \right) \right\} }{ (1 + \gamma )^{\frac{(m-1)(m-2)}{2}}} - \frac{ \exp \left\{ - \lambda \delta_{0} \left( \frac{(1 + \gamma )^{m} - 1}{\gamma} \right) \right\} }{ (1 + \gamma )^{\frac{(m-1)(m)}{2}}} , \end{array} $$
(A14)

where the second equality follows from Eq. A13. Now, on using Eqs. A12 and A14 in Eq. A11, we get

$$ \begin{array}{@{}rcl@{}} P(M = m) &=& {\int}_{0}^{\infty} \left\{ \frac{ \exp \left\{ - \lambda \delta_{0} \left( \frac{(1 + \gamma )^{(m-1)} - 1}{\gamma} \right) \right\} }{ (1 + \gamma )^{\frac{(m-1)(m-2)}{2}}} - \frac{ \exp \left\{ - \lambda \delta_{0} \left( \frac{(1 + \gamma )^{m} - 1}{\gamma} \right) \right\} }{ (1 + \gamma )^{\frac{(m-1)(m)}{2}}} \right\} \\ && \times \frac{\left( \frac{b}{\alpha}\right)^{\frac{\beta}{\alpha}}}{\Gamma\left( \frac{\beta}{\alpha}\right)} \lambda^{\left( \frac{\beta}{\alpha}\right) -1} \exp\left\{ - \left( \frac{b}{\alpha} \right) \lambda \right\} d \lambda \\ & = & {\int}_{0}^{\infty} \left[ \frac{ \exp \left\{ - \lambda \delta_{0} \left( \frac{(1 + \gamma )^{(m-1)} - 1}{\gamma} \right) \right\} }{ (1 + \gamma )^{\frac{(m-1)(m-2)}{2}}} \right] \frac{\left( \frac{b}{\alpha}\right)^{\frac{\beta}{\alpha}}}{\Gamma\left( \frac{\beta}{\alpha}\right)} \lambda^{\left( \frac{\beta}{\alpha}\right) -1} \exp\left\{ - \left( \frac{b}{\alpha} \right) \lambda \right\} d \lambda \\ && - {\int}_{0}^{\infty} \left[ \frac{ \exp \left\{ - \lambda \delta_{0} \left( \frac{(1 + \gamma )^{m} - 1}{\gamma} \right) \right\} }{ (1 + \gamma )^{\frac{(m-1)(m)}{2}}} \right] \frac{\left( \frac{b}{\alpha}\right)^{\frac{\beta}{\alpha}}}{\Gamma\left( \frac{\beta}{\alpha}\right)} \lambda^{\left( \frac{\beta}{\alpha}\right) -1} \exp\left\{ - \left( \frac{b}{\alpha} \right) \lambda \right\} d \lambda \\ & = & \frac{\left( \frac{b}{\alpha}\right)^{\frac{\beta}{\alpha}}}{\Gamma\left( \frac{\beta}{\alpha}\right)} \frac{1}{(1 + \gamma )^{\frac{(m-1)(m-2)}{2}}} {\int}_{0}^{\infty} \lambda^{\left( \frac{\beta}{\alpha}\right) -1} \exp \left[- \lambda \left\{\frac{b}{\alpha} + \delta_{0} \left( \frac{(1 + \gamma )^{(m-1)} - 1}{\gamma} \right) \right\} \right] d \lambda \\ && - \frac{\left( \frac{b}{\alpha}\right)^{\frac{\beta}{\alpha}}}{\Gamma\left( \frac{\beta}{\alpha}\right)} \frac{1}{(1 + \gamma )^{\frac{(m-1)(m)}{2}}} {\int}_{0}^{\infty} \lambda^{\left( \frac{\beta}{\alpha}\right) -1} \exp \left[ - \lambda \left\{\frac{b}{\alpha} + \delta_{0} \left( \frac{(1 + \gamma )^{(m)} - 1}{\gamma} \right) \right\} \right] d \lambda \\ & = & \frac{1}{(1+\gamma)^{\frac{(m-1)(m-2)}{2}}} \left[\frac{b}{b + \alpha \delta_{0} \left( \frac{(1+\gamma)^{(m-1)} - 1}{\gamma}\right)}\right]^{\frac{\beta}{\alpha}} \\&& - \frac{1}{(1+\gamma)^{\frac{m(m-1)}{2}}} \left[\frac{b}{b + \alpha \delta_{0} \left( \frac{(1+\gamma)^{m} - 1}{\gamma}\right)}\right]^{\frac{\beta}{\alpha}}, \end{array} $$

where the last equality follows from the fact that

$$ {\int}_{0}^{\infty} x^{k-1} \exp\{-c x\} dx = \frac{ {\Gamma}(k) }{ c^{k} }. $$

Proof of Theorem 4.2

Let gi(t) = δi(t) + t, i = 1, 2, for t ≥ 0. Note that δ1(t) ≤ δ2(t) is equivalent to the fact that g1(t) ≤ g2(t), for all t ≥ 0. This means that \(\gamma _{1} \leq \gamma _{2} \text { and } \delta _{0}^{(1)} \leq \delta _{0}^{(2)}\). From Corollary 3.1, we have

$$ \begin{array}{@{}rcl@{}} \bar F_{L_{i}}(t) &=& \left( \frac{b}{b + \alpha t} \right)^{\frac{\beta}{ \alpha}} \sum\limits_{m = 0}^{M_{0}^{(i)}(t)} {{\frac{\beta}{\alpha} + m - 1}\choose{m}} \frac{ \alpha^{m} }{ (1+\gamma_{i})^{\frac{m(m-1)}{2}} } \left[ \frac{ t - \left( \frac{ (1 + \gamma_{i} )^{m} - 1 }{\gamma_{i}} \right) \delta_{0}^{(i)} }{ b+\alpha t } \right]^{m}, \\ i&=&1,2, \end{array} $$

where \( M_{0}^{(i)}(t) =\max \limits \{ n \geq 1 | g_{i}^{n-1}(\delta _{0}^{(i)}) < t \}\). Since g1(t) ≤ g2(t) and both g1(⋅) and g2(⋅) are increasing functions, we get \(g_{1}^{n-1}(\delta _{0}^{(1)}) \leq g_{2}^{n-1}(\delta _{0}^{(2)})\). Thus, if there exists an n such that \(g_{2}^{n-1}(\delta _{0}^{(2)}) < t \), then \( g_{1}^{n-1}(\delta _{0}^{(1)}) < t \). Consequently, \(M_{0}^{(2)}(t) \leq M_{0}^{(1)}(t)\). Again, \( \gamma _{1} \leq \gamma _{2} \text { and } \delta _{0}^{(1)} \leq \delta _{0}^{(2)} \) together imply that

$$ \frac{\left( t - \left( \frac{ [(1 + \gamma_{2} )^{m} - 1] }{\gamma_{2}} \right) \delta_{0}^{(2)} \right)^{m}}{ (1+\gamma_{2})^{\frac{m(m-1)}{2}}} \leq \frac{\left( t - \left( \frac{ [(1 + \gamma_{1} )^{m} - 1] }{\gamma_{1}} \right) \delta_{0}^{(1)} \right)^{m}}{ (1+\gamma_{1})^{\frac{m(m-1)}{2}}}, \text{ for all } t\geq 0.$$

On combining these two facts, we get \( \bar F_{L_{2}}(t) \leq \bar F_{L_{1}}(t)\), for all t > 0, and hence the result follows. □

Proof of Theorem 4.3

Case-I: Let 0 ≤ t < δ0. Then, from Eq. 3.1, we have \(\bar F_{L}(t) = \exp \{ - \lambda t \}\). Thus, rL(t) = λ, and hence the result follows.

Case-II: Let δ0t < (2 + γ)δ0. Then, from Eq. 3.1, we have

$$\bar F_{L}(t) = \exp \{ - \lambda t \} + \lambda \exp \{ - \lambda t \}(t- \delta_{0} ),$$

which gives

$$ \begin{array}{@{}rcl@{}} f_{L}(t)& =& \lambda \exp \{ - \lambda t \} + \lambda^{2} \exp \{ - \lambda t \} (t - \delta_{0} ) - \lambda \exp \{ - \lambda t \} \\&=&\lambda \bar F_{L}(t) - \lambda \exp \left\{- \lambda \left( \frac{\gamma t + \delta_{0}}{1 + \gamma} \right) \right\} \bar F_{L} \left( \frac{t - \delta_{0}}{ 1 + \gamma } \right), \end{array} $$

where the last equality holds because 0 ≤ (tδ0)/(1 + γ) < δ0 and \(\bar F_{L}(t) = \exp \{ - \lambda t \}\) for 0 ≤ t < δ0. Thus,

$$ \begin{array}{@{}rcl@{}} r_{L}(t) = \lambda - \lambda \exp \left\{- \lambda \left( \frac{\gamma t + \delta_{0}}{1 + \gamma} \right) \right\} \left[ \frac{ \bar F_{L} \left( \frac{t - \delta_{0}}{ 1 + \gamma } \right) }{ \bar F_{L}(t) } \right], \text{ for } \delta_{0} \leq t < (2 + \gamma) \delta_{0}. \end{array} $$

Case-III: Let (2 + γ)δ0t < (1 + (1 + γ) + (1 + γ)2)δ0. Then, from Eq. 3.1, we get

$$ \begin{array}{ll} & \bar F_{L}(t) = \exp \{ - \lambda t \} + \lambda \exp \{ - \lambda t \} (t - \delta_{0} ) + \lambda^{2} \exp \{ - \lambda t \} \frac{(t - (2 + \gamma) \delta_{0} )^{2}}{ (2!)(1 + \gamma )}, \end{array} $$

which gives

$$ \begin{array}{@{}rcl@{}} f_{L}(t) & = &\lambda \left( \exp \{ - \lambda t \} + \lambda \exp \{ - \lambda t \} (t - \delta_{0} ) + \lambda^{2} \exp \{ - \lambda t \} \frac{(t - (2 + \gamma) \delta_{0} )^{2}}{ 2!(1 + \gamma )} \right) \\ && - \left( \lambda \exp \{ - \lambda t \} + \lambda^{2} \exp \{ - \lambda t \} \frac{(t - (2 + \gamma) \delta_{0} )}{(1 + \gamma )} \right) \\ &=& \lambda \bar F_{L}(t) - \lambda \left( \frac{\exp \{ - \lambda t \}}{\exp \left\{ - \lambda \left( \frac{t - \delta_{0}}{1+\gamma}\right) \right\}} \right) \\ & &\times\left[ \exp \left\{ - \lambda \left( \frac{t - \delta_{0}}{1+\gamma}\right) \right\} + \lambda \exp \left\{ - \lambda \left( \frac{t - \delta_{0}}{1+\gamma}\right) \right\} \left( \left( \frac{t - \delta_{0}}{ 1 + \gamma }\right) - \delta_{0} \right) \right] \\ & =& \lambda \bar F_{L}(t) - \lambda \exp \left\{- \lambda \left( \frac{\gamma t + \delta_{0}}{1 + \gamma} \right) \right\} \bar F_{L} \left( \frac{t - \delta_{0}}{ 1 + \gamma } \right), \end{array} $$

where the last equality holds because δ0 ≤ (tδ0)/(1 + γ) < (2 + γ)δ0 and

$$\bar F_{L}(t) = \exp \{ - \lambda t \} + \lambda \exp \{ - \lambda t \}(t- \delta_{0} ),\text{ for }\delta_{0} \leq t < (2 + \gamma) \delta_{0}.$$

Thus,

$$ \begin{array}{@{}rcl@{}} r_{L}(t) &=& \lambda - \lambda \exp \left\{- \lambda \left( \frac{\gamma t + \delta_{0}}{1 + \gamma} \right) \right\} \left[ \frac{ \bar F_{L} \left( \frac{t - \delta_{0}}{ 1 + \gamma } \right) }{ \bar F_{L}(t) } \right], \text{ for } (2 +\gamma) \delta_{0} \\&\leq& t < (1+ (1+ \gamma) + (1 + \gamma)^{2} ) \delta_{0} . \end{array} $$

By proceeding in a similar manner as done in above three cases, we get the required result. □

Proof of Theorem 4.4

On using Eq. 3.1, we have

$$ \exp \left\{- \lambda \left( \frac{\gamma \cdot t + \delta_{0}}{1 + \gamma} \right) \right\} \left[ \frac{ \bar F \left( \frac{t - \delta_{0}}{ 1 + \gamma } \right) }{ \bar F(t) } \right] = \frac{\sum\limits\limits_{m = 0}^{N_{0}(t)-1} \frac{ \lambda^{m} }{ m! } \frac{\left( t - \left( \frac{ [(1 + \gamma )^{m+1} - 1] }{\gamma} \right) \delta_{0} \right)^{m}}{ (1+\gamma)^{\frac{m(m+1)}{2}}}}{\sum\limits\limits_{m = 0}^{N_{0}(t)} \frac{ \lambda^{m}}{ m! } \frac{\left( t - \left( \frac{ [(1 + \gamma )^{m} - 1] }{\gamma} \right) \delta_{0} \right)^{m}}{ (1+\gamma)^{\frac{m(m-1)}{2}}}}. $$

Note that the above expression is a ratio of two polynomials where the degree of the polynomial given in the numerator is strictly less than that in the denominator. Thus,

$$ \lim_{t \to \infty} \exp \left\{- \lambda \left( \frac{\gamma t + \delta_{0}}{1 + \gamma} \right) \right\} \left[ \frac{ \bar F_{L} \left( \frac{t - \delta_{0}}{ 1 + \gamma } \right) }{ \bar F_{L}(t) } \right] = 0,$$

and hence the result follows from Theorem 4.3. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, D., Hazra, N.K. & Finkelstein, M. On the Time-Dependent Delta-Shock Model Governed by the Generalized PóLya Process. Methodol Comput Appl Probab 24, 1627–1650 (2022). https://doi.org/10.1007/s11009-021-09880-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-021-09880-8

Keywords

Mathematics Subject Classification (2010)

Navigation