Skip to main content
Log in

Approximate controllability and stabilizability of a linearized system for the interaction between a viscoelastic fluid and a rigid body

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We study control properties of a linearized fluid–structure interaction system, where the structure is a rigid body and where the fluid is a viscoelastic material. We establish the approximate controllability and the exponential stabilizability for the velocities of the fluid and of the rigid body and for the position of the rigid body. In order to prove this, we prove a general result for this kind of systems that generalizes in particular the case without structure. The exponential stabilization of the system is obtained with a finite-dimensional feedback control acting only on the momentum equation on a subset of the fluid domain and up to some rate that depends on the coefficients of the system. We also show that as in the case without structure, the system is not exactly null-controllable in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badra M, Takahashi T (2014) On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems. ESAIM Control Optim Calc Var 20(3):924–956

    Article  MathSciNet  Google Scholar 

  2. Boldrini JL, Doubova A, Fernández-Cara E, González-Burgos M (2012) Some controllability results for linear viscoelastic fluids. SIAM J Control Optim 50(2):900–924

    Article  MathSciNet  Google Scholar 

  3. Boulakia M, Guerrero S (2013) Local null controllability of a fluid–solid interaction problem in dimension 3. J Eur Math Soc: JEMS 15(3):825–856

    Article  MathSciNet  Google Scholar 

  4. Boulakia M, Osses A (2008) Local null controllability of a two-dimensional fluid–structure interaction problem. ESAIM Control Optim Calc Var 14(1):1–42

    Article  MathSciNet  Google Scholar 

  5. Chowdhury S, Mitra D, Ramaswamy M, Renardy M (2017) Approximate controllability results for linear viscoelastic flows. J Math Fluid Mech 19(3):529–549

    Article  MathSciNet  Google Scholar 

  6. Cîndea N, Micu S, Rovenţa I, Tucsnak M (2015) Particle supported control of a fluid-particle system. J Math Pures Appl (9) 104(2):311–353

    Article  MathSciNet  Google Scholar 

  7. Dardé J, Ervedoza S (2019) Backward uniqueness results for some parabolic equations in an infinite rod. Math Control Relat Fields 9(4):673–696

    Article  MathSciNet  Google Scholar 

  8. Doubova A, Fernández-Cara E (2005) Some control results for simplified one-dimensional models of fluid–solid interaction. Math Models Methods Appl Sci 15(5):783–824

    Article  MathSciNet  Google Scholar 

  9. Doubova A, Fernández-Cara E (2012) On the control of viscoelastic Jeffreys fluids. Syst Control Lett 61(4):573–579

    Article  MathSciNet  Google Scholar 

  10. Doubova A, Fernández-Cara E, González-Burgos M (2000) Controllability results for linear viscoelastic fluids of the Maxwell and Jeffreys kinds. C R Acad Sci Paris Sér. I Math 331(7):537–542

    Article  MathSciNet  Google Scholar 

  11. Evans LC (2010) Partial differential equations, volume 19 of graduate studies in mathematics. American Mathematical Society, Providence

    Google Scholar 

  12. Fabre C, Lebeau G (1996) Prolongement unique des solutions de l’equation de Stokes. Commun. Partial Differ. Equ. 21(3–4):573–596

    Article  MathSciNet  Google Scholar 

  13. Fernández-Cara E, Guillén F, Ortega RR (2002) Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind. In: Handbook of numerical analysis, vol. VIII

  14. Gorshkov AV (2016) Boundary stabilization of Stokes system in exterior domains. J Math Fluid Mech 18(4):679–697

    Article  MathSciNet  Google Scholar 

  15. Götze K (2013) Strong solutions for the interaction of a rigid body and a viscoelastic fluid. J Math Fluid Mech 15(4):663–688

    Article  MathSciNet  Google Scholar 

  16. Guillopé C, Saut J-C (1990) Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal 15(9):849–869

    Article  MathSciNet  Google Scholar 

  17. Halanay A, Pandolfi L (2015) Approximate controllability and lack of controllability to zero of the heat equation with memory. J Math Anal Appl 425(1):194–211

    Article  MathSciNet  Google Scholar 

  18. Imanuvilov O, Takahashi T (2007) Exact controllability of a fluid-rigid body system. J Math Pures Appl (9) 87(4):408–437

    Article  MathSciNet  Google Scholar 

  19. Leugering G (1984) Exact controllability in viscoelasticity of fading memory type. Appl Anal 18(3):221–243

    Article  MathSciNet  Google Scholar 

  20. Leugering G (1987) Exact boundary controllability of an integro-differential equation. Appl Math Optim 15(3):223–250

    Article  MathSciNet  Google Scholar 

  21. Leugering G (1987) Time optimal boundary controllability of a simple linear viscoelastic liquid. Math Methods Appl Sci 9(3):413–430

    Article  MathSciNet  Google Scholar 

  22. Liu Y, Takahashi T, Tucsnak M (2013) Single input controllability of a simplified fluid–structure interaction model. ESAIM Control Optim Calc Var 19(1):20–42

    Article  MathSciNet  Google Scholar 

  23. Maity D, Mitra D, Renardy M (2019) Lack of null controllability of viscoelastic flows. ESAIM Control Optim Calc Var 25:Paper No. 60, 26

  24. Micu S, Zuazua E (2001) On the lack of null-controllability of the heat equation on the half space. Port Math (N.S.) 58(1):1–24

    MathSciNet  MATH  Google Scholar 

  25. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations, volume 44 of applied mathematical sciences. Springer, New York

    MATH  Google Scholar 

  26. Ramaswamy M, Roy A, Takahashi T (2020) Remark on the global null controllability for a viscous Burgers-particle system with particle supported control. Appl Math Lett 107:106483

    Article  MathSciNet  Google Scholar 

  27. Raymond J-P (2010) Feedback stabilization of a fluid–structure model. SIAM J Control Optim 48(8):5398–5443

    Article  MathSciNet  Google Scholar 

  28. Raymond J-P, Vanninathan M (2005) Exact controllability in fluid-solid structure: the Helmholtz model. ESAIM Control Optim Calc Var 11(2):180–203

    Article  MathSciNet  Google Scholar 

  29. Renardy M (2000) Mathematical analysis of viscoelastic flows, volume 73 of CBMS-NSF regional conference series in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  30. Renardy M (2005) Are viscoelastic flows under control or out of control? Syst Control Lett 54(12):1183–1193

    Article  MathSciNet  Google Scholar 

  31. Renardy M (2007) On control of shear flow of an upper convected Maxwell fluid. ZAMM Z Angew Math Mech 87(3):213–218

    Article  MathSciNet  Google Scholar 

  32. Renardy M (2009) Controllability of viscoelastic stresses for nonlinear Maxwell models. J Non Newton Fluid Mech 156(1):70–74

    Article  Google Scholar 

  33. Roy A, Takahashi T (2019) Local null controllability of a rigid body moving into a Boussinesq flow. Math Control Relat Fields 9(4):793–836

    Article  MathSciNet  Google Scholar 

  34. Roy A, Takahashi T (2021) Stabilization of a rigid body moving in a compressible viscous fluid. J Evol Equ 21(1):167–200

    Article  MathSciNet  Google Scholar 

  35. Sabbagh LMK (2018) Study of rigid solids movement in a viscous fluid. Theses, Université Montpellier ; Université libanaise. https://tel.archives-ouvertes.fr/tel-02159446

  36. Savelev E, Renardy M (2010) Control of homogeneous shear flow of multimode Maxwell fluids. J Non Newton Fluid Mech 165(3):136–142

    Article  Google Scholar 

  37. Takahashi T (2003) Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv Differ Equ 8(12):1499–1532

    MathSciNet  MATH  Google Scholar 

  38. Takahashi T, Tucsnak M, Weiss G (2015) Stabilization of a fluid-rigid body system. J Differ Equ 259(11):6459–6493

    Article  MathSciNet  Google Scholar 

  39. Tao Q, Gao H (2016) On the null controllability of heat equation with memory. J Math Anal Appl 440(1):1–13

    Article  MathSciNet  Google Scholar 

  40. Temam R (1983) Problèmes mathématiques en plasticité, volume 12 of Méthodes Mathématiques de l’Informatique [Mathematical methods of information science]. Gauthier-Villars, Montrouge

Download references

Acknowledgements

Debanjana Mitra acknowledges the support from an Inspire Faculty Fellowship, RD/0118-DSTIN40-001. Arnab Roy was supported by the Czech Science Foundation (GAČR) project GA19-04243S. The Institute of Mathematics, CAS, is supported by RVO:67985840. Takéo Takahashi was partially supported by the ANR research project IFSMACS (ANR-15-CE40-0010). The three authors were partially supported by the IFCAM project “Analysis, Control and Homogenization of Complex Systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takéo Takahashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, D., Roy, A. & Takahashi, T. Approximate controllability and stabilizability of a linearized system for the interaction between a viscoelastic fluid and a rigid body. Math. Control Signals Syst. 33, 637–667 (2021). https://doi.org/10.1007/s00498-021-00295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-021-00295-x

Keywords

Mathematics Subject Classification

Navigation