Skip to content
BY 4.0 license Open Access Published by De Gruyter July 7, 2021

Determination of essential and non-essential element contents of drinking water and baby water for infant’s nutrition

  • Funda Demir , Meral Yildirim Ozen and Emek Moroydor Derun EMAIL logo

Abstract

In this study, essential (Ca, Cr, Cu, Fe, K, Mg, Na, P, Zn), and non-essential (Al, Ni, Pb) element contents of the drinking and baby water samples which are sold in the local market and tap water samples in Istanbul were examined. It was determined that elements of Cr, Cu, Fe, P, Zn, Al, and Ni were below detection limits in all water samples. Among the non-essential elements analyzed in water samples, Pb was the only detected element.

At the same time, the percentages that meet the daily element requirements of infants were also calculated. As a result of the evaluations made, there is no significant difference in infant nutrition between baby waters and other drinking waters in terms of the element content.

1 Introduction

The consumption of essential nutrients with adequate quantities and types is significant for the healthy growth of infants. Also, the appropriate amount of fluid intake is vital for infants because of body temperature regulation, transportation of nutrients, cell metabolism, and normal kidney function (United States Department of Agriculture Food and Nutrition Service, 2009). Breast milk is the main fluid source for infants especially for the first six months (Ministry of Health of New Zealand, 2008). However, in some cases, infants cannot be breastfed and substitutes like infant formulas are crucial for both 0–6 months and 6–12 months old infants to get sufficient nutrients. Therefore, the ingredients and the quality of the breast milk substitute foods and water, which is mainly used for the preparation of infant formula, gain importance. Some studies investigate the elemental composition and daily intake amounts of some essential elements. Mir-Marqués et al. (2015) obtained different commercial baby foods containing meat, fish, vegetable, and fruit from the Spanish market. The mineral composition was determined for 14 elements (Al, Ba, Cd, Ca, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Sr, Zn) and adequate mineral intake values were calculated. Silva et al. (2013) assessed the amount of particular essential elements of Fe, Zn, Cu, and Mn in baby foods to evaluate their bioaccessibility by the human body for the infants. Pandelova et al. (2012) calculated the infant intakes of some non-essential and the essential elements in the most consumed baby foods in Europe including infant formula, solid foods, and beverages (SFB).

Besides these baby foods, water consumption is very significant for baby nutrition. The drinking water may contain some elements which are known or suspected to be essential for humans. Due to the consumed water affects the total trace element and mineral intake of infants, its content should be known. The investigated water types and their element contents in some literature studies are given in Table 1.

Table 1

Published studies about essential and non-essential element concentrations of water in literature

Water types Essential elements (mg/L) Non-essential elements (mg/L)


Ca Cr Cu Fe K Mg Na P Zn Al Ni Pb Reference
Tap water (mean) North American Surface water sources 34.00 ± 21.00 10.00 ± 80.00 35.00 ± 41.00 Azoulay et al., 2001
Ground water sources 52.00 ± 24.00 20.00 ± 13.00 91.00 ± 67.00 Azoulay et al., 2001
Riyadh Eastern Riyadh 52.00 0 4.60 57.00 0.00784 Abed and Alwakeel, 2007
Western Riyadh 9.60 0 0.70 11.50 0.00988 Abed and Alwakeel, 2007
Central Riyadh 39.50 0 6.60 26.00 0.00419 Abed and Alwakeel, 2007
Peninsular Malaysia 6.65 ± 5.30 0.04 ± 0.18 0.09 ± 0.06 0.06 ± 0.06 3.20 ± 1.61 1.10 ± 1.05 4.30 ± 3.39 0.04 ± 0.07 0.91 ± 0.56 0.28 ± 0.86 Azrina et al., 2011
Bottled water (mean) Riyadh A 8.40 0.02 0.50 1.00 22.40 0.006 Abed and Alwakeel, 2007
B 17.00 0.02 0.20 2.50 14.00 0.011 Abed and Alwakeel, 2007
C 17.00 0 2.50 7.00 20.00 0.010 Abed and Alwakeel, 2007
North American Spring waters 18.00 ± 22.00 8.00 ± 18.00 4.00 ± 4.00 Azoulay et al., 2001
Mineral waters 100.00 ± 125.00 24.00 ± 42.00 371.00 ± 335.00 Azoulay et al., 2001
European Low mineralization water 60.00 ± 40.00 16.00 ± 19.00 13.00 ± 13.00 Azoulay et al., 2001
Moderate mineralization water 262.00 ± 139.00 64.00 ± 37.00 157.00 ± 797.00 Azoulay et al., 2001
High mineralization water 60.00 ± 59.00 16.00 ± 20.00 1.51 ± 153.00 Azoulay et al., 2001

In recent years, drinking water produced for infants and called “baby water” is consumed as well as other bottled and tap water. The nutrient properties of water are related to the consumption and affected by the behavioral factors and environmental conditions (Olivares and Uauy, 2005). The nutritionally important minerals in water are selenium (Se), sodium (Na), fluorine (F), potassium (K), molybdenum (Mo), boron (B), magnesium (Mg), copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), and chromium (Cr). The lack or excess of these elements may cause adverse influences on the infant’s body (Molska et al., 2014).

In spite of the fact that there are lots of studies about the element content of baby food such as infant formulas and fruit juices, there was no study about the element content of baby waters and comparison with drinking waters and tap water. The purpose of this study is the determination and comparison the element content of baby, drinking, and tap water samples. Also, it is aimed to calculate the daily main intake (DMI) of analyzed elements in water samples for both 1–6 months and 6–12 months old infants. Additionally, the obtained DMI values are compared with the element requirements of infants depend on their gender and weight.

2 Results and discussion

2.1 Validation of analytical method

Table 2 shows the results of analytical method validation in terms of detection and quantification limits, correlation coefficients, and coefficient of variance measurements by ICP-OES. R2 of the calibration curves for these elements were higher than 0.999.

Table 2

Validation of analytical method obtained using a Standard reference in terms of limits of detection and quantification

Element Limits of detection (mg/L) Limits of quantification (mg/L) Correlation coefficient (R2) Coefficient of variance (CV%)
BW-1 BW-2 BW-3 DW-1 DW-2 DW-3 DW-4 CW-1
Ca 0.0063 0.0209 0.9999 9.575 1.957 1.068 2.517 9.621 8.189 2.372 0.329
Cr 0.0001 0.0005 0.9996 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Cu 0.0004 0.0013 0.9999 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Fe 0.0017 0.0055 0.9999 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
K 0.0015 0.0049 0.9999 2.175 0.288 2.886 8.529 2.323 7.644 3.885 0.078
Mg 0.0010 0.0035 0.9999 3.550 0.161 0.041 0.059 1.204 1.433 2.816 0.177
Na 0.0029 0.0096 0.9999 8.033 0.893 5.936 1.575 2.706 0.766 1.013 0.413
P 0.0038 0.0125 0.9998 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Zn 0.0002 0.0006 0.9996 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Al 0.002 0.0069 0.9997 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Ni 0.0008 0.0028 0.9999 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Pb 0.0018 0.006 0.9996 2.244 8.838 9.428 2.571 8.318 7.856 7.443 8.658
  1. *

    b.d.l: below detection limit.

The stability of the detector response was investigated by analyzing a multi-element Standard solution with moderate concentration with each batch (ten samples). The relative standard deviation and the values of CV% were less than 10% for all the analyte elements.

2.2 Instrumental analysis results

The concentrations of essential and non-essential elements in samples are given in Table 3. Essential elements of Ca, K, Mg, Na, and non-essential elements of Pb were found in all water types with different concentrations. On the other hand, Cr, Cu, Fe, P, Zn, Al, and Ni were below the detection limit in all samples.

Table 3

The concentrations of essential and non-essential elements in water samples

Elements Conc. (mg/L) BW-1 BW-2 BW-3 DW-1 DW-2 DW-3 DW-4 CW-1
Essential Ca 32.125 9.067 19.195 13.765 12.170 11.570 4.710 1.931
Cr b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Cu b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Fe b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
K 0.13 0.246 0.074 0.987 0.487 0.037 0.182 0.181
Mg 14.34 1.762 5.130 2.359 2.759 1.924 1.030 0.398
Na 1.426 1.425 0.203 1.212 0.706 1.844 2.093 1.197
P b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Zn b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.

Non-essential Al b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Ni b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Pb 0.0315 0.016 0.030 0.028 0.009 0.018 0.014 0.025
  1. *

    b.d.l: below detection limit.

Ca concentrations varied between 9.067–32.125 mg/L for baby water, 4.710–13.765 mg/L for drinking water. However, for city water, Ca content was measured as 1.931 mg/L which was the lowest Ca in analyzed samples. When water samples were examined, it was seen that baby waters, except BW-2, had higher Ca content than drinking and city water samples.

The concentration of K in the samples shows an irregular change. The lowest and highest values were observed for DW-3 (0.037 mg/L) and DW-1 (0.987 mg/L), respectively. K concentration of other water samples was in this range.

In baby waters, Mg content of BW-1 (14.340 mg/L) and BW-3 (5.130 mg/L) showed significant difference according to the other analyzed water samples while BW-2 (1.762 mg/L) sample had a similar Mg concentration with drinking water. Mg concentration of drinking water samples changed in the range of 1.030 mg/L (DW-4) and 2.759 mg/L (DW-2). Among all samples, city water had the lowest Mg amount as 0.398 mg/L.

Na concentration of baby waters was between 0.203 mg/L (BW-3) and 1.426 mg/L (BW-1) when Na content of the drinking water samples was between 0.706 mg/L (DW-2) and 2.093 mg/L (DW-4). On the other hand, it was observed that while the concentration of other essential elements in the city water was lower than baby water and drinking water samples, Na concentration (1.197 mg/L) was in the same range as them.

The concentration of the only detected non-essential element of Pb was between 0.016 mg/L (BW-2) and 0.032 mg/L (BW-1) in baby water. In drinking water, Pb concentrations were in the range of 0.009 mg/L (DW-2) and 0.028 mg/L (DW-1). The Pb content was determined as 0.025 mg/L in the city water.

It was calculated that how many percent of the daily element requirement of the infants was meet by the essential elements (Na, Ca, K, and Mg) in the analyzed waters, and the results are shown in Table 4. In calculations, water/free liquids required (WR) and adequate intakes (AI) values of the essential elements were used. The results were estimated for both female and male infants. According to results, for 0–6 months old infants, maximum Na intake percentages were calculated as 1.3779% (DW-4) for male infants and 1.2558% (DW-4) for female infants. Maximum Ca (12.6894% for male and 11.5650% for female) and Mg (37.7620% for male and 34.4160% for female) intake percentages were found in BW-1. Maximum K intake percentages were calculated as 0.1948% and 0.1776% in DW-1 for male and female infants, respectively.

Table 4

Daily intake percentages of essential elements with the consumption of baby water (%)

Water types 0–6 months

Na Ca K Mg




Male Female Male Female Male Female Male Female








Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max
BW-1 0.523 0.939 0.499 0.856 7.068 12.689 6.746 11.565 0.014 0.026 0.014 0.023 21.032 37.762 20.076 34.416
BW-2 0.523 0.938 0.499 0.855 1.995 3.581 1.904 3.264 0.027 0.049 0.026 0.044 2.584 4.640 2.467 4.229
BW-3 0.074 0.133 0.071 0.122 4.223 7.582 4.031 6.910 0.008 0.015 0.008 0.013 7.525 13.510 7.183 12.313
DW-1 0.444 0.798 0.424 0.727 3.028 5.437 2.891 4.955 0.109 0.195 0.104 0.178 3.460 6.212 3.303 5.662
DW-2 0.259 0.465 0.247 0.423 2.677 4.807 2.556 4.381 0.054 0.096 0.051 0.088 4.046 7.264 3.862 6.620
DW-3 0.676 1.214 0.645 1.106 2.545 4.570 2.430 4.165 0.004 0.007 0.004 0.007 2.821 5.065 2.693 4.616
DW-4 0.767 1.378 0.733 1.256 1.036 1.861 0.989 1.696 0.020 0.036 0.019 0.033 1.510 2.711 1.441 2.471
CW-1 0.439 0.788 0.419 0.718 0.425 0.763 0.406 0.695 0.020 0.036 0.019 0.033 0.585 1.049 0.558 0.956
Water types 6–12 months

Na Ca K Mg




Male Female Male Female Male Female Male Female








Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max
BW-1 0.305 0.391 0.278 0.366 9.761 12.5411 8.896 11.738 0.015 0.019 0.013 0.017 15.105 19.407 13.766 18.164
BW-2 0.304 0.391 0.277 0.366 2.755 3.5394 2.511 3.313 0.028 0.036 0.025 0.033 1.856 2.385 1.692 2.232
BW-3 0.043 0.056 0.039 0.052 5.832 7.4934 5.316 7.014 0.008 0.011 0.008 0.010 5.404 6.943 4.925 6.499
DW-1 0.259 0.332 0.236 0.311 4.182 5.3736 3.812 5.030 0.111 0.143 0.102 0.134 2.485 3.193 2.265 2.988
DW-2 0.151 0.194 0.137 0.181 3.698 4.7510 3.370 4.447 0.055 0.071 0.050 0.066 2.906 3.733 2.648 3.494
DW-3 0.394 0.506 0.359 0.474 3.516 4.5168 3.204 4.228 0.004 0.005 0.004 0.005 2.026 2.603 1.847 2.436
DW-4 0.447 0.574 0.407 0.537 1.431 1.8387 1.304 1.721 0.021 0.026 0.019 0.025 1.084 1.393 0.988 1.304
CW-1 0.256 0.328 0.233 0.307 0.587 0.7540 0.535 0.706 0.020 0.026 0.019 0.025 0.420 0.539 0.383 0.505

When the results of 6–12 months old infants compared with 0–6 months old infant results, it was observed that maximum intake percentages were obtained in the same water samples for all essential elements due to their higher element concentration.

In Table 5, daily main intake values of Pb based on gender and age of infants and PTDI values are presented. PTDI values were calculated for the ages of 1st, 6th, and 12th months according to the infant weights which are given in Table 6. When results were compared, it was seen that daily main intake values of Pb for each water sample were below PTDI and were not at a harmful level for the infant body. Also, it was observed that Pb concentration was not dependent on water types because it showed a difference according to brands.

Table 5

Daily main intake values of Pb based on gender and age of infants

Month 1st 6th 12th



Males Females Males Females Males Females
PTDI 15.714 15.000 28.214 25.714 36.786 33.929

Daily main intake (microgram) BW-1 13.860 13.230 24.885 22.680 31.973 29.925
BW-2 7.040 6.720 12.640 11.520 16.240 15.200
BW-3 13.200 12.600 23.700 21.600 30.450 28.500
DW-1 12.100 11.550 21.725 19.800 27.913 26.125
DW-2 3.740 3.570 6.715 6.120 8.628 8.075
DW-3 7.920 7.560 14.220 12.960 18.270 17.100
DW-4 6.270 5.985 11.258 10.260 14.464 13.538
CW-1 10.780 10.290 19.355 17.640 24.868 23.275
Table 6

Water/free liquids required (WR) according to ages (Fluid Requirements for Children, 2019, available at: www.articles.complexchild.com/00037.pdf/)

Age (month) Reference weight (kg) Water/free liquids required (WR) (mL)


Males Females Males Females
1 4.4 4.2 440 420
2 5.3 4.9 530 490
3 6.0 5.5 600 550
4 6.7 6.1 670 610
5 7.3 6.7 730 670
6 7.9 7.2 790 720
7 8.4 7.7 840 770
8 8.9 8.1 890 810
9 9.3 8.5 930 850
10 9.7 8.9 970 890
11 10.0 9.2 1000 920
12 10.3 9.5 1015 950
Table 7

Adequate intakes (AI) and provisional tolerable daily intake (PTDI) of elements

Element type Element Life stage (month) Limits Reference

AI (mg/day) PTDI (μg/kg bw)
Non-essential Pb 0 to 6 3.57 Ihedioha et al., 2016
6 to 12
Essential Na 0 to 6 120 National Academies of Sciences, Engineering, and Medicine, 1998
6 to 12 370
Ca 0 to 6 200 National Academies of Sciences, Engineering, and Medicine, 1998
6 to 12 260
K 0 to 6 400 National Academies of Sciences, Engineering, and Medicine, 1998
6 to 12 700
Mg 0 to 6 30 National Academies of Sciences, Engineering, and Medicine, 1998
6 to 12 75

3 Conclusion

In this study, essential (Ca, Cr, Cu, Fe, K, Mg, Na, P, Zn), and non-essential (Al, Ni, Pb) element contents of the drinking and baby water samples which are sold in the local market and tap water samples in İstanbul were examined. According to obtained results, it was determined that elements of Cr, Cu, Fe, P, Zn, Al, and Ni were below detection limits in all water samples. The highest element concentration belonged to Ca in the samples and it was followed by Mg, Na, and K respectively. Among the non-essential elements analyzed in water samples, Pb is the only detected element. When baby waters, drinking waters, and tap water were investigated separately, it was seen that the content of the elements varied according to the water brands, not to the water types. For this reason, there is no clear distinction between the elemental contents of baby waters and drinking waters. In the study, when filtered tap water was analyzed as a control sample, it was observed that the content of Ca and K in packaged water was higher than tap water, but there was no significant difference in other elements in this comparison. At the same time, the percentages that meet the daily element requirements of infants were also calculated. When the results are examined, it was determined that the percentage of meeting daily requirements varies depending on the concentrations changes of the elements in a different brand of baby and drinking water. As a result of the evaluations made, it was ascertained that there is no significant difference for infant nutrition between baby waters and other drinking waters in terms of the element content. This study presents a new result for conscious consumption and infant health. Waters to be used by consumers should be categorized on a reliable brand basis, not an infant, drinking or tap water as they are on the market.

Experimetnal

Preparation and supply of water samples

Three brands of baby water (BW) and four brands of drinking water (DW) samples were purchased from the local market in Turkey in August 2017. The waters were stored at ambient conditions (temperature, 24 ± 5°C; humidity, 45 ± 10%) in the original packings: 1 L (Brand 1-BW 1), 330 mL (Brand 2-BW 2), and 200 mL (Brand 3-BW 3) plastic bottle for baby water; 500 mL plastic bottle for drinking water.

The samples were used in the study for the determination of Na, Ca, K, Mg, Fe, Zn, P, Cu, Cr, Pb, Al, and Ni elements by Inductively coupled plasma optical emission spectrometry (ICP OES). In addition to the supplied waters, the city water (CW) that was purified using the Rainbow Water Filter System was also analysed. No pre-treatment process was applied to the samples before ICP-OES analysis.

Preparation of the calibration sets

Standard solutions for measuring the elements Ca, Cr, Cu, Fe, K, Mg, Na, P, Zn, Al, Ni, and Pb by ICP-OES were prepared from mono-elemental stock solutions of 1000 mg L−1 (Merck, Darmstadt, Germany). Standard solutions were prepared in different concentrations by stock solutions diluted with Nitric acid 3‰ (v/v) (HNO3, 65%) (Merck chemicals (Merck KgaA, Darmstadt, Germany)) to ensure that the water samples were compatible with the elemental amounts.

A linear calibration algorithm analysis was used to check linearity in terms of correlation coefficients (R2) for all elements. All analyses were performed in three replicates.

Elemental analysis of the water samples

Elemental analysis of water samples was performed with Perkin-Elmer Optima 2100 DV ICP-OES equipped with an AS-93 autosampler (PerkinElmer, CT, USA).

ICP-OES is a rapid and accurate elemental analysis technique for the determination and identification of minor and major elements. ICP-OES has lots of advantages in comparison to other spectral techniques. It provides high sensitivity for detecting and simultaneous determinations of several major and minor elements (Stojanovic et al., 2014).

The measurement conditions of these analyses were determined as follows a power of 1.45 kW, plasma flow of 15.0 L min−1, auxiliary flow of 0.8 L min−1, and nebulizer flow of 1 L min−1.

Based on the types on the market, the bottled waters were classified as follows: BW-1, BW-2, and BW-3 are baby waters, DW-1, DW-2, DW-3, and DW-4 are drinking waters. The city water was classified as CW-1.

Daily essential element intake percentages

Essential element intake percentages for infants between the months of 1–6 and 6–12 were calculated according to Eqs. 1 and 2:

(1) m=C×WR

(2) DMI=m×100/AI

where m is the element contents (mg) which is calculated according to water/free liquids requirement (WR) of infant based on their ages and gender (Table 2), C (mg/L) is the element concentration of water, AI is adequate intake values which are given in Table 3, and DMI is daily main intakes. Daily intake percentage (DIP) was also calculated using Eq. 3:

(3) DIP=DMI×100/AI

Babies have a bigger surface area to weight ratio when compared to adults and developmental levels are different. These are the parameters that cause the fluid requirement of babies to differ from adults. In literature studies, it is seen that fluid requirements differ according to the expenditure which is proportional to the surface area. The Holliday-Segar formula is one of the various formulas used to calculate the liquid needs of infants and calculates liquid requirements based on weight.

According to this method an infant needs (Fluids and Electrolyte Management, 2019, available at: www.reliasmedia.com/articles/137306-fluids-and-electrolyte-management-part---fluids-dehydration-and-sodium-homeostasis/):

  1. 100 mL/kg/d for the first 10 kg of weight,

  2. 50 mL/kg/d for the second 10 kg of weight,

  3. 20 mL/kg/d for babies over 20 kg of weight.

Statistical analysis

Regression analysis was conducted using triplicate measurements of all samples and Statistica 8.0 computer programme (StatSoft Inc., Tulsa, USA) was used for the analysis. Analysis was performed for calculating average values and standard deviations of measurements.

The average values of the triplicate measurements for each sample were calculated using Eq. 4:

(4) x¯=i=0i(xin)

The standard deviation of the analysis results were calculated using Eq. 5:

(5) s=i=0i(xi-x¯)2n-1

where x is the average value of the sample, xi is the average value of the sample at the parallel i, n is the number of parallel samples, and s is the standard deviation.

Quality control

Limits of detection (LOD) and limits of quantification (LOQ) and relative standard deviations are used as validation parameters for analytical analysis methods. Replicate measurements of standard or sample solutions give information about results accuracy. In this study, detection limits of all elements used in the experiment were determined and the capability of the method according to validation results were calculated by replicate measurements results.

LOD and LOQ values were calculated from the results obtained by three and ten times the standard deviation results of the ten blank solutions (Khan et al., 2013). Solutions were prepared individually.

Percent coefficients of variance (CV%) are obtained by measuring the relative standard deviation of ten repeated replicates of one sample and it gives information about the precision of analysis. Relative standard deviations of analytical results below 15% are regarded as appropriate in terms of precision (Madeja et al., 2014).

  1. Funding information: Authors state no funding involved.

  2. Author contributions: Funda Demir: writing – original draft, methodology, formal analysis, visualization; Meral Yildirim Ozen: writing – original draft, writing – review and editing, methodology, formal analysis, Visualization; Emek Moroydor Derun: writing – original draft, writing – review and editing, methodology, formal analysis, project administration.

  3. Conflict of interest: Authors state no conflict of interest.

References

Abed K.F., Alwakeel S.S., Mineral and microbial contents of bottled and tap water in Riyadh, Saudi Arabia. Middle East J. Sci. Res., 2007, 2, 151–156.Search in Google Scholar

Azoulay A., Garzon P., Eisenberg M.J., Comparasion of the mineral content of tap water and bottled waters. J. Gen. Intern. Med., 2001, 16, 168–175.10.1111/j.1525-1497.2001.04189.xSearch in Google Scholar PubMed PubMed Central

Azrina A., Khoo H.E., Idris M.A., Amin I., Razman M.R., Major inorganic elements in tap water samples in Peninsular Malaysia. Mal. J. Nutr., 2011, 17, 271–276.Search in Google Scholar

Ihedioha J.N., Amu I.A., Ekere N.R., Okoye C.O.B., Levels of some trace metals (Pb, Cd and Ni) and their possible health risks from consumption of selected fish and shellfish from Nigerian markets. Int. Food Res. J., 2016, 23, 2557–2563.Search in Google Scholar

Khan N., Jeong I.S., Hwang I.M., Kim J.S., Choi S.H., Nho E.Y., et al., Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS. Food Chem., 2013, 141, 3566–3570.10.1016/j.foodchem.2013.06.034Search in Google Scholar PubMed

Madeja A.S., Welna M., Jedryczko D., Pohl P., Developments and strategies in the spectrochemical elemental analysis of fruit juices. Trend. Anal. Chem., 2014, 55, 68–80.10.1016/j.trac.2013.12.005Search in Google Scholar

Ministry of Health of New Zealand, Foodand Nutrition Guidelines for Healthy Infants and Toddlers (Aged 0–2): A background paper. 2008.Search in Google Scholar

Ministry of Health, Food and Nutrition Guidelines for Healthy Infants and Toddlers (Aged 0–2): A background paper (4th ed.). Wellington, New Zeland, Ministry of Health, 2012.Search in Google Scholar

Mir-Marqués A., González-Masó A., Luisa Cervera M., Guardia M., Mineral profile of Spanish commercial baby food. Food Chem., 2015, 172, 238–244.10.1016/j.foodchem.2014.09.074Search in Google Scholar PubMed

Molska A., Gutowska I., Baranowska-Bosiacka I., Nocen I., Chlubek D. The content of elements in infant formulas and drinks against mineral requirements of children. Biol. Trace Elem. Res., 2014, 158, 422–427.10.1007/s12011-014-9947-1Search in Google Scholar PubMed PubMed Central

Olivares M., Uauy C.R., Essential nutrients in drinking water. In: World Health Organization, Nutrients in Drinking Water. World Health Organization, Geneva, 2005, 44–64.Search in Google Scholar

Pandelova M., Lopez W.L., Michalke B., Schramm K.W., Ca, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn contents in baby foods from the EU market: Comparison of assessed infant intakes with the present safety limits for minerals and trace elements. J. Food Comp. Anal., 2012, 27, 120–127.10.1016/j.jfca.2012.04.011Search in Google Scholar

Silva E.N., Leme B.P., Cidade M., Cadore S., Evaluation of the bioaccessible fractions of Fe, Zn, Cu and Mn in baby foods. Talanta, 2013, 117, 184–188.10.1016/j.talanta.2013.09.008Search in Google Scholar PubMed

Stojanovic B.T., Mitic S.S., Mitic M.N., Paunovic D.D., Themulti-element analysis of the apple peel using Icp-Oes method. Adv Tech., 2014, 3(2), 96–104.10.5937/savteh1402096SSearch in Google Scholar

The National Academies of Sciences, Engineering, and Medicine, Institute of Medicine, Food and Nutrition Board, Dietary Reference Intakes (DRIs): Estimated Average Requirements. 1998.Search in Google Scholar

United States Department of Agriculture Food and Nutrition Service, Special Supplemental Nutrition Program for Woman, Infants and Children (WIC), Infant Nutrition and Feeding. 2009.Search in Google Scholar

Received: 2020-10-19
Accepted: 2021-05-11
Published Online: 2021-07-07

© 2021 Funda Demir et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/mgmc-2021-0021/html
Scroll to top button