Skip to main content
Log in

Minimax programming as a tool for studying robust multi-objective optimization problems

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper aims to investigate optimality conditions for a weakly Pareto solution to a robust multi-objective optimization problem with locally Lipschitzian data. We do this by using a minimax programming approach, namely, by establishing the necessary optimality condition for a (local) optimal solution to a robust minimax optimization problem under a suitable constraint qualification, we then employ it to arrive in the desired target. In addition, some duality results for both robust minimax optimization problems and robust multi-objective optimization problems are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bram, J. (1966). The Lagrange multiplier theorem for max-min with several constraints. SIAM Journal on Applied Mathematics, 14, 665–667.

    Article  Google Scholar 

  • Bector, C. R., Chandra, S., & Kumar, V. (1994). Duality for a class of minmax and inexact programming problem. Journal of Mathematical Analysis and Applications, 186(3), 735–746.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1997). Stable truss topology design via semidefinite programming. SIAM Journal on Optimization, 7(4), 991–1016.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769–805.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (2008). Selected topics in robust convex optimization. Mathematical Programming, 112(1), 125–158.

    Article  Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. New Jersy: Princeton University Press.

    Book  Google Scholar 

  • Beck, A., & Ben-Tal, A. (2009). Duality in robust optimization: Primal worst equals dual best. Operations Research Letters, 37(1), 1–6.

    Article  Google Scholar 

  • Ben-Tal, A., den Hertog, D., & Vial, J. (2015). Deriving robust counterparts of nonlinear uncertain inequalities. Mathematical Programming, 149(1–2), 265–299.

    Article  Google Scholar 

  • Chen, J., Kobis, E., & Yao, J. C. (2019). Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints. Journal of Optimization Theory and Applications, 181, 411–436.

    Article  Google Scholar 

  • Chuong, T. D. (2016). Optimality and duality for robust multiobjective optimization problems. Nonlinear Analysis, 134, 127–143.

    Article  Google Scholar 

  • Chuong, T. D., & Kim, D. S. (2014). Optimality conditions and duality in nonsmooth multiobjective optimization problems. Annals of Operations Research, 217(1), 117–136.

    Article  Google Scholar 

  • Chuong, T. D., & Kim, D. S. (2016). A class of nonsmooth fractional multiobjective optimization problems. Annals of Operations Research, 244(2), 367–383.

    Article  Google Scholar 

  • Chuong, T. D., & Kim, D. S. (2017). Nondifferentiable minimax programming problems with applications. Annals of Operations Research, 251(1–2), 73–87.

    Article  Google Scholar 

  • Chuong, T. D., & Kim, D. S. (2018). Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications. Annals of Operations Research, 267(1–2), 81–99.

    Article  Google Scholar 

  • Clarke, F. H. (1983). Optimization and nonsmooth analysis. New York: Wiley.

    Google Scholar 

  • Ehrogtt, M. (2005). Multicriteria optimization. Berlin: Springer.

    Google Scholar 

  • Ehrogtt, M., Ide, J., & Schobel, A. (2014). Minmax robustness for multi-objective optimization problems. European Journal of Operational Research, 239, 17–31.

    Article  Google Scholar 

  • El Ghaoui, L., & Lebret, H. (1997). Robust solution to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications, 18(4), 1035–1064.

    Article  Google Scholar 

  • El Ghaoui, L., Oustry, F., & Lebret, H. (1998). Robust solutions to uncertain semidefinite programs. SIAM Journal on Optimization, 9(1), 33–52.

    Article  Google Scholar 

  • Falk, J. E. (1976). Exact solutions to inexact linear programs. Operations Research, 24(4), 783–787.

    Article  Google Scholar 

  • Hong, Z., Bae, K. D., & Kim, D. S. (2019). Optimality conditions in convex optimization with locally Lipschitz constraints. Optimization Letters, 13, 1059–1068.

    Article  Google Scholar 

  • Jiao, L. G., & Lee, J. H. (2021). Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data. Annals of Operations Research, 296, 803–820.

    Article  Google Scholar 

  • Kim, D. S., Son, P. T., & Tuyen, N. V. (2019). On the existence of Pareto solutions for polynomial vector optimization problems. Mathematical Programming, 177, 321–341.

    Article  Google Scholar 

  • Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. London: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Lai, H. C., & Huang, T. Y. (2012). Nondifferentiable minimax fractional programming in complex spaces with parametric duality. Journal of Global Optimization, 53(2), 243–254.

    Article  Google Scholar 

  • Mordukhovich, B. S. (2006). Variational analysis and generalized differentiation, I: Basic theory. Berlin: Springer.

    Book  Google Scholar 

  • Mordukhovich, B. S. (2018). Variational Analysis and Applications, Springer Monographs in Mathematics.

  • Son, T. Q., & Kim, D. S. (2013). \(\varepsilon \)-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints. Journal of Global Optimization, 57, 447–465.

    Article  Google Scholar 

  • Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21(5), 1154–1157.

    Article  Google Scholar 

  • Singh, C. (1982). Convex programming with set-inclusive constraints and its applications to generalized linear and fractional programming. Journal of Optimization Theory and Applications, 38(1), 33–42.

    Article  Google Scholar 

  • Tanimoto, S. (1980). Nondifferentiable mathematical programming and convex-concave functions. Journal of Optimization Theory and Applications, 31(3), 331–342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Sang Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019R1A2C1008672).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Z., Bae, K.D. & Kim, D.S. Minimax programming as a tool for studying robust multi-objective optimization problems. Ann Oper Res 319, 1589–1606 (2022). https://doi.org/10.1007/s10479-021-04179-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04179-w

Keywords

Mathematics Subject Classification

Navigation