Skip to main content
Log in

Petrogenesis of peraluminous magmas in the Central Andean backarc: the Huayra Huasi Volcanic Complex, NW Argentina

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Huayra Huasi Volcanic Complex of Miocene age (11.88 ± 0.15 Ma U–Pb zircon) was emplaced in the Northern Puna plateau of Argentina, spatially associated with ignimbrites erupted from Altiplano–Puna Volcanic Complex calderas. The complex comprises biotite-bearing dacites and low-SiO2 rhyolites in the northern area and high-SiO2 rhyolites in the south, all with peraluminous compositions (A/CNK > 1.0–1.22). The units have broadly similar initial Sr and Nd isotopic ratios (87Sr/86Sr ∼ 0.71013–0.71225 and εNd ∼ −5.4 to −7.0) and are composed of plagioclase, quartz, sanidine and biotite as the main phenocryst phases. All units host macroscopic microgranular enclaves and xenoliths of sillimanite–biotite schists, sillimanite- and sillimanite–garnet gneisses, as well as fibrous alumina-rich microxenoliths, the latter being especially abundant in the southern rhyolites. Petrographic, mineral and whole-rock geochemistry, geothermometric and isotopic data indicate that all units of the complex originated by contamination of andesite magmas through assimilation of upper crustal lithologies in early stages of magma evolution. The fibrous alumina-rich microxenoliths are composed almost entirely of refractory minerals (sill + Kfsp ± Pl ± Bt) and interpreted as peritectic or restitic products of partial melting of assimilated metasedimentary rocks similar to the unmodified metamorphic xenoliths in the complex. Geochemical modeling indicates that, after early-stage contamination, each magmatic unit evolved separately. Whereas the northern dacites and low-SiO2 rhyolites underwent assimilation and fractional crystallization throughout their history, the southern rhyolites mainly evolved via fractional crystallization of felsic phases alone. This study shows that the peraluminous nature of felsic magmas do not necessarily originate by partial melting of crustal material but can be acquired by metaluminous magmas during later evolution. The processes shown here of assimilation and fractional crystallization and pure fractional crystallization has relevance for other igneous bodies of similar compositions in the Puna backarc and worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

All data utilized are included as tables and cited the sources.

Code availability

Not applicable.

References

  • Acosta-Vigil A, London D, Morgan GB (2006) Experiments on the kinetics of partial melting of a leucogranite at 200 MPa H2O and 690–800°C: compositional variability of melts during the onset of H2O-saturated crustal anatexis. Contrib Miner Petrol 151:539–557

    Article  Google Scholar 

  • Arnosio M (2010) Evidencia textural y geoquímica de mezcla de magmas en el volcán Chimpa, Puna Salteña. Revista De La Asociación Geológica Argentina 66:253–270

    Google Scholar 

  • Asch G, Schurr B, Bohm M, Yuan X, Haberland C, Heit B, Kind R, Woelbern I, Bataille K, Comte D, Pardo M, Viramonte J, Rietbrock A, Geisse P (2006) Seismological studies of the Central and Southern Andes. In: Oncken O et al. (ed.) The Andes—Active Subduction Orogeny. Berlin, Springer-Verlag, Frontiers in Earth Sciences 1:439–451

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J Petrol 43(8):1469–1503

    Article  Google Scholar 

  • Beard JS, Ragland PC, Crawford ML (2005) Reactive bulk assimilation: A model for crust-mantle mixing in silicic magmas. Geology 33:681–684

    Article  Google Scholar 

  • Blevin PL (2004) Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: implications for gold‐rich ore systems. Resource Geol 54(3):241–252

    Article  Google Scholar 

  • Blevin PL, Chappell BW (1995) Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia; the metallogeny of I-and S-type granites. Econ Geol 90(6):1604–1619

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Caffe PJ, Coira B (2008) Depósitos epitermales polimetálicos asociados a complejos volcánicos dómicos: Casa Colorada, Pan de Azúcar, Chinchillas y Cerro Redondo. Relatorio XVII Congreso Geológico Argentino 350–357

  • Caffe PJ, Trumbull RB, Coira B, Romer RL (2002) Petrogenesis of Early Neogene magmatism in the Northern Puna; implications for magma genesis and crustal processes in the Central Andean Plateau. J Petrol 43(5):907–942

    Article  Google Scholar 

  • Caffe PJ, Soler MM, Coira B, Cabrera AP, Flores PI (2007) Estratigrafía y centros eruptivos de la región de Pairique, Puna jujeña. Revista De La Asociación Geológica Argentina 62(2):242–256

    Google Scholar 

  • Caffe PJ, Coira B, Kay SM (2008) Magmatismo neógeno temprano de la Puna Jujeña. Relatorio XVII Congreso Geológico Argentino 302–312

  • Caffe PJ, Trumbull RB, Siebel W (2012) Petrology of the Coyaguayma ignimbrite, northern Puna of Argentina: Origin and evolution of a peraluminous high-SiO2 rhyolite magma. Lithos 134–135:179–200

    Article  Google Scholar 

  • Caffe PJ, Schmitt A, Jofré CB, Trumbull RB, Peralta Y, Maro G, Sarchi C (2019). Geocronología U/Pb de circones del Complejo Volcánico Pairique: interpretaciones petrogéneticas y eruptivas. XII Congreso de Mineralogía, Petrología ígnea y metamórfica y Metalogénesis, Actas 57–58, Córdoba, Argentina

  • Castro A, Patiño Douce AE, Corretgé LG, De La Rosa JD, El-Biad M, El-Hmidi H (1999) Origin of peraluminous granites and granodiorites, Iberian massif, Spain. An experimental test of granite petrogenesis. Contrib Miner Petrol 135:255–276

    Article  Google Scholar 

  • Castro A, Corretgé GL, El-Biad M, El-Hmidi H, Fernández C, Patiño douce AE, (2000) Experimental constraints on Hercynian anatexis in the Iberian Massif, Spain. J Petrol 41(10):1471–1488

    Article  Google Scholar 

  • Chmielowski J, Zandt G (1999) The Central Andean, Altiplano-Puna Magma Body. Geophys Res Lett 26(6):783–786

    Article  Google Scholar 

  • Clarke DB (2007) Assimilation of xenocrysts in granitic magmas: principles, processes, proxies and problems. Can Mineral 45:5–30

    Article  Google Scholar 

  • Clarke DB (2019) The origins of strongly peraluminous granitoid rocks. Can Mineral 57:529–550

    Article  Google Scholar 

  • Coira B (1990) Ignimbritas y lavas dacíticas del Cenozoico superior de la Puna Jujeña y sus contenidos anómalos en Sn, Sb, Bi, Ag y Au. 11° Congreso Geológico Argentino 1:299–302. San Juan

  • Coira B, Mahlburg Kay S (2004) Central Andean Plateau Ignimbrites in the Puna Back-arc Cenozoic Volcanic Province (PBCV). General Assembly IAVCEI 2004. Pucón, Chile

  • Coira B, Mahlburg Kay S, Viramonte J (1993) Upper cenozoic magmatic evolution of the Argentine Puna—a model for changing subduction geometry. Int Geol Rev 35(8):667–720

    Article  Google Scholar 

  • Coira B, Caffe PJ, Ramírez A, Chayle W, Díaz A, Rosas SA, Pérez A, Pérez EMB, Orosco O, Martínez M (2004) Hoja Geológica 2366-I Mina Pirquitas (1:250.000). SEGEMAR Secretaría De Minería De La Nación: Boletín 269:1–123

    Google Scholar 

  • Coira B, Mahlburg Kay S, Caffe PJ (2008) Magmatismo Neógeno tardío de la Puna norte. Relatorio XVII Congreso Geológico Argentino 302–312

  • Coira B, Koukharsky M, Ribero Guevara S, Cisterna CE (2009) Puna (Argentina) and northern Chile Ordovician basic magmatism: a contribution to the tectonic setting. J S Am Earth Sci 27:24–35

    Article  Google Scholar 

  • Coira B, Kay SM, Viramonte JG, Kay RW, Galli C (2018) Origin of late Miocene Peraluminous Mn-rich Garnet-bearing Rhyolitic Ashes in the Andean Foreland (Northern Argentina). J Volcanol Geoth Res 364:20–34

    Article  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2000) Magma storage and mixing conditions for the 1953–1974 eruptions of Southwest Trident volcano, Katmai National Park, Alaska. Contrib Mineral Petrol 140(1):99–118

    Article  Google Scholar 

  • de Paolo DJ (1981) Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • de Silva SL (1989) The Altiplano-Puna volcanic complex of the central Andes. Geology 17:1102–1106

    Article  Google Scholar 

  • de Silva SL, Kay SM (2018) Turning up the Heat: High-Flux Magmatism in the Central Andes. Elements 14(4):245–250

    Article  Google Scholar 

  • de Silva SL, Zandt G, Trumbull RB, Viramonte JG, Salas G, Jimenez N (2006) Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: a thermomechanical perspective. In: Troise C, De Natale G, Kilburn CRJ (ed.) Mechanisms of Activityand Unrestat Large Calderas. Geological Society, Special Publications. England, pp 269:47–63

  • Deniel C, Pin C (2001) Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal Chim Acta 426:95–103

    Article  Google Scholar 

  • Díaz-Alvarado J, Castro A, Fernández C, Moreno-Ventas I (2011) Assessing bulk assimilation in cordierite-bearing granitoids from the Central System Batholith, Spain; experimental, geochemical and geochronological constraints. J Petrol 52:223–256

    Article  Google Scholar 

  • Donovan JJ, Lowers HA, Rusk BG (2011) Improved electron probe microanalysis of trace elements in quartz. Am Miner 96(2–3):274–282

    Article  Google Scholar 

  • Elburg MA (1996) Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan Fold Belt, Australia. J Petrol 37:1385–1408

    Article  Google Scholar 

  • Erdmann S, London D, Morgan VIGB, Clarke DB (2007) The contamination of granitic magma by metasedimentary country-rock material: an experimental study. Can Mineral 45:43–61

    Article  Google Scholar 

  • Erdmann S, Scaillet B, Kellett DA (2010) Xenocryst assimilation and formation of peritectic crystals during magma contamination: An experimental study. J Volcanol Geoth Res 3(4):355–367

    Article  Google Scholar 

  • Ersoy EY (2011) PETROMODELER (Petrological Modeler): a Microsoft® Excel© spreadsheet program for modelling melting, mixing, crystallization and assimilation processes in magmatic systems. Turkish J Earth Sci 22:115–125

    Google Scholar 

  • Feeley TC, Dungan MA (1996) Compositional and dynamic controls on mafic—silicic magma interactions at continental arc volcanoes: Evidence from Cordón El Guadal, Tatara-San Pedro Complex, Chile. J Petrol 37(6):1547–1577

    Article  Google Scholar 

  • Franco MG, Santamans C, Flores P, Piovano L, Cordoba F (2018) Caracterización de los subambientes del Salar de Olaroz, Puna Norte. Proceedings of the 7th Congreso Argentino de Geomorfología y Cuaternario 2591–6653

  • Gardien V, Thompson AB, Grujic D, Ulmer P (1995) Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J Geophys Res 100:15581–15591

    Article  Google Scholar 

  • Gervasoni F, Klemme S, Rocha-Júnior ERV, Berndt J (2016) Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts. Contrib Mineraogy Petrol 171(3):1–12

    Google Scholar 

  • Groppo C, Rolfo F, Mosca P (2013) The cordierite-bearing anatectic rocks of the higher Himalayan crystallines (eastern Nepal): low-pressure anatexis, melt productivity, melt loss and the preservation of cordierite. J Metamorph Geol 31(2):187–204

    Article  Google Scholar 

  • Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29:333–338

    Article  Google Scholar 

  • Jofré CB (2020) Magmatismo silíceo mioceno de puna norte: su petrogénesis y rol en el transporte de metales y componentes volátiles. Ph.D. Thesis. Universidad Nacional de Salta

  • Jofré CB, Caffe PJ, Trumbull RB, Siebel W (2018) Volcanismo riolítico peraluminoso en la zona de los Andes Centrales: La Riolita Corral Negro, Puna Norte, Argentina. XV Congreso Geológico Chileno, Actas 807–809. Concepción

  • Johannes W, Holtz F (1996) Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, pp 335

  • Kay SM, Coira B, Caffe PJ, Chen C (2010) Regional chemical diversity, crustal and mantle sources and evolution of the Neogene Puna plateau ignimbrites of the Central Andes. J Volcanol Geoth Res 198:81–111

    Article  Google Scholar 

  • Kern JM, de Silva S, Schmitt AK, Kaiser JF, Iriarte AR, Economos R (2016) Geochronological imaging of an episodically constructed subvolcanic batholith: U-Pb in zircon chronochemistry of the Altiplano-Puna volcanic complex of the Central Andes. Geosphere 12(4):1054–1077

    Article  Google Scholar 

  • Kontak DJ, Clark AH (1997) The Minastira peraluminous granite, Puno, southeastern Peru; a quenched, hypabyssal intrusion recording magma commingling and mixing. Mineral Mag 61:743–764

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750. https://doi.org/10.1093/petrology/27.3.745

    Article  Google Scholar 

  • Leloup PH, Liu X, Mahéo G, Paquette JL, Arnaud N, Aubray A, Liu X (2015) New constraints on the timing of partial melting and deformation along the Nyalam section (central Himalaya): implications for extrusion models. Geological Society, London, Special Publications 412(1):131–175

    Article  Google Scholar 

  • Lindsay JM, Schmitt AK, Trumbull RB, de Silva SL, Siebel W, Emmermann R (2001) Magmatic evolution of the La Pacana caldera system, Central Andes, Chile: compositional variation of two cogenetic, large-volume felsic ignimbrites. J Petrol 42:459–486

    Article  Google Scholar 

  • Litvinovsky BA, Steele IM, Wickham SM (2000) Silicic magma formation in overthickened crust: melting of charnockite and leucogranite at 15,20 and 25 kbar. J Petrol 41:717–737

    Article  Google Scholar 

  • Liu ZC, Wu FY, Ji WQ, Wang JG, Liu CZ (2014) Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos 208–209:118–136

    Article  Google Scholar 

  • Liu ZC, Wu FY, Ding L, Liu XC, Wang JG, Ji WQ (2016) Highly fractionated late Eocene (~35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos 240–243:337–354

    Article  Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke HG, Romer RL, Dulski P (2001) Composition and density model of the continental crust at an active continental margin - the central Andes between 21° and 27° S. Tectonophysics 341:195–223

    Article  Google Scholar 

  • Lucci F, Rossetti F, Becchio R, Theye T, Gerdes A, Opitiz J, Baez W, Bardelli L, De Astis G, Viramonte J, Giordano G (2018) Magmatic Mn-rich garnets in volcanic settings: Age and longevity of the magmatic plumbing system of the Miocene Ramadas volcanism (NW Argentina). Lithos 322:238–249

    Article  Google Scholar 

  • Maro G, Caffe PJ (2017) Neogene monogenetic volcanism from the Northern Puna region: products and eruptive styles. In: Nemeth K, Carrasco-Nuñez G, Aranda-Gomez JJ, Smith IEM (ed.) Monogenetic Volcanism. Geological Society, London, Special Publications, 446:337–359

  • Marquillas RA, del Papa C, Sabino IF (2005) Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous-Paleogene), northwestern Argentina. Int J Earth Sci 94:94–113

    Article  Google Scholar 

  • Matteini M, Mazzuoli R, Omarini R, Cas R, Maas R (2002) Geodynamical evolution of Central Andes at 24°S as inferred by magma composition along the Calama–Olacapato–El Toro transversal volcanic belt. J Volcanol Geoth Res 118(1–2):205–228

    Article  Google Scholar 

  • McGlashan N, Brown L, Kay S (2008) Crustal thickness in the central Andes from teleseismically recorded depth phase precursors. Geophys J Int 175(3):1013–1022

    Article  Google Scholar 

  • Míková J, Denková P (2007) Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. J Geosci 52(3–4):221–226

    Google Scholar 

  • Miller CF (1985) Are strongly peraluminous magmas derived from pelitic sedimentary sources? J Geol 93:673–689

    Article  Google Scholar 

  • Morgan VIGB, London D, Luedke RG (1998) Petrochemistry of late-Miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia. J Petrol 39:601–632

    Article  Google Scholar 

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775. https://doi.org/10.1016/0016-7037(74)90149-5

    Article  Google Scholar 

  • Ort MH, Coira BL, Mazzoni MM (1996) Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes. Contrib Miner Petrol 123(3):308–322

    Article  Google Scholar 

  • Paces JB, Miller JD Jr (1993) Precise U-Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J Geophys Res 98(B8):13997–14013

    Article  Google Scholar 

  • Patiño Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granite magmas? In: Castro A, Fernandez C, Vigneresse JL (ed) Understanding Granites. Integrating New and Classical Techniques: Geological Society of London, Special Publication, 168:55–75

  • Patiño Douce AE, Beard JS (1995) Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738

    Article  Google Scholar 

  • Patiño Douce AEP, Beard JS (1996) Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. J Petrol 37(5):999–1024

    Article  Google Scholar 

  • Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710

    Article  Google Scholar 

  • Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Miner Petrol 107:202–218

    Article  Google Scholar 

  • Petrinovic IA, Riller U, Brod JA, Alvarado G, Arnosio M (2006) Bimodal volcanism in a tectonic transfer zone: Evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina. J Volcanol Geoth Res 152:240–252

    Article  Google Scholar 

  • Petrinovic IA, Grosse P, Guzmán S, Caffe PJ (2017) Evolución del volcanismo cenozoico en la Puna Argentina. In: Muruaga CM and Grosse P (ed) Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio XX Congreso Geológico Argentino, pp 469–483

  • Pichavant M, Kontak DJ, Valencia Herrera J, Clark AH (1988a) The Miocene-Pliocene Macusani volcanics, SE Peru: I. Mineralogy and magmatic evolution of two-mica aluminosilicate-bearing ignimbrite suite. Contrib Miner Petrol 100:300–324

    Article  Google Scholar 

  • Pichavant M, Kontak DJ, Briqueu L, Valencia Herrera J, Johnston RM (1988b) The Miocene-Pliocene Macusani Volcanics, SE Peru: II. Geochemistry and origin of felsic peraluminous magma. Contrib Miner Petrol 100:325–338

    Article  Google Scholar 

  • Pin C, Zalduegui JFS (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Anal Chim Acta 339(1–2):79–89

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” (B(U)) correction procedure for improved microanalysis. In: Armstrong JT (ed) Microbeam Analysis. San Francisco Press, San Francisco, pp 104–106

    Google Scholar 

  • Preston RJ, Dempster TJ, Bell BR, Rogers G (1999) The petrology of mullite-bearing peraluminous xenoliths: implications for contamination processes in basaltic magmas. J Petrol 40(4):549–573

    Article  Google Scholar 

  • Putirka KD (2008) Thermometer and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Salisbury MJ, Jicha BR, de Silva SL, Singer BS, Jiménez NC, Ort MH (2011) 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province. Geol Soc Am Bull 123:821–840

    Article  Google Scholar 

  • Sandeman HA, Clark AH (2003) Glass-rich, cordierite–biotite rhyodacite, Valle Ninahuisa, Puno, southeastern Peru: petrological evidence for hybridization of “Lachlan S-type” and potassic mafic magmas. J Petrol 44:355–385

    Article  Google Scholar 

  • Sandeman HA, Clark AH (2004) Commingling and mixing of S-type peraluminous, ultrapotassic and basaltic magmas in the Cayconi volcanic field, Cordillera de Carabaya, SE Peru. Lithos 73:187–213

    Article  Google Scholar 

  • Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmas. J Petrol 36:663–705

    Article  Google Scholar 

  • Schmitt AK, de Silva SL, Trumbull RB (2001) Magma evolution in the Purico ignimbrite complex, northern Chile: evidence for zoning in a dacitic magma by injection of rhyolitic melts following mafic recharge. Contrib Mineral Petrol 140:680–700

    Article  Google Scholar 

  • Schmitt AK, Klitzke M, Gerdes A, Schäfer C (2017) Zircon Hafnium-Oxygen Isotope and Trace Element Petrochronology of Intraplate Volcanic Rocks from the Eifel (Germany) and Implications for Mantle versus Crustal Origins of Zircon Megacrysts. J Petrol 58(9):1841–1870

    Article  Google Scholar 

  • Schwab K (1973) Die Stratigraphie in der umgebung des salar Cauchari. Geotekt Forsch 43:168

    Google Scholar 

  • Schwab K, Lippolt H (1974) K-Ar mineral ages and late Cenozoic history of the salar Cauchari area (Argentina Puna). Proceedings Symposium on Andean and Antartic Volcanology 693–714

  • Searle MP, Cottle JM, Streule MJ, Waters DJ (2009) Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Transac Royal Soc Edinburgh 100:1–15. https://doi.org/10.1017/S175569100901617X

    Article  Google Scholar 

  • Secchi FA, Brotzu P, Callegari E (1991) The Arburese igneous complex (SW Sardinia, Italy)—an example of dominant igneous fractionation leading to peraluminous cordierite-bearing leucogranites as residual melts. Chem Geol 92:213–249

    Article  Google Scholar 

  • Seggiaro R, Guzmán S, Martí J, Montero C, López E (2014) Stratigraphy of the Coranzulí caldera. STRATI 2013. Springer International Publishing 1273:1269

  • Siegel C, Bryan SE, Allen CM, Purdy DJ, Cross AJ, Uysal IT, Gust DA (2018) Crustal and thermal structure of the Thomson Orogen: constraints from the geochemistry, zircon U-Pb age, and Hf and O isotopes of subsurface granitic rocks. Aust J Earth Sci 65(7–8):967–986

    Article  Google Scholar 

  • Słaby E, Galbarczyk-Gąsiorowska L, Seltmann R, Müller A (2007) Alkali feldspar megacryst growth: geochemical modelling. Mineral Petrol 89:1–29

    Article  Google Scholar 

  • Soler MM (2005) Caldera Vilama (Mioceno Superior): Su Estratigrafía, Evolución Magmática y Relación con Eventos Ignimbríticos Tempranos. Puna Argentina – Altiplano Boliviano. Ph.D. thesis (unpublished). Universidad Nacional de Salta

  • Słaby E, Götze J, Wörner G, Simon K, Wrzalik R, Śmigielski M (2008) K feldspar phenocrysts in microgranular magmatic enclaves: a cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos 105:85–97

    Article  Google Scholar 

  • Stevens G, Clemens JD, Droop G (1997) Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contrib Miner Petrol 134(17):32

    Google Scholar 

  • Sureda RJ, Galliski MA, Argañaraz P, Daroca J (1986) Aspectos Metalogenéticos del Noroeste Argentino (Salta y Jujuy). Capricornio 1(1):39–95. Salta

  • Taussi M, Godoy B, Piscaglia F, Morata D, Agostini S, le Roux P, González-Maurel O, Gallmeyer G, Menzies A, Renzulli A (2019) The upper crustal magma plumbing system of the Pleistocene Apacheta-Aguilucho Volcanic Complex area (Altiplano-Puna, northern Chile) as inferred from the erupted lavas and their enclaves. J Volcanol Geoth Res 373:179–198

    Article  Google Scholar 

  • Taylor RG (1979) Geology of tin deposits. Elsevier, 543, Amsterdam

  • Teixeira RJS, Neiva AMR, Gomes MEP, Corfu F, Cuesta A, Croudace IW (2012) The role of fractional crystallization in the genesis of early syn-D3, tin-mineralized Variscan two-mica granites from the Carrazeda de Ansiães area, northern Portugal. Lithos 153:177–191

    Article  Google Scholar 

  • Turner JCM (1960) Estratigrafía de la Sierra de Santa Victoria y adyacencias. Boletín De La Academia Nacional De Ciencias De Córdoba 41:163–169

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting reactions in the pelitic system (consequences for crustal differentiation). Contrib Miner Petrol 98:257–276

    Article  Google Scholar 

  • Viramonte JG, Omarini RH, Araña Saavedra V, Aparicio A, García Cacho L, Parica P (1984) Edad, génesis y mecanismos de erupción de las riolitas granatíferas de San Antonio de los Cobres, Provincia de Salta. 9° Congreso Geológico Argentino, Actas 3: 216–233, Bariloche, Argentina

  • Visonà D, Lombardo B (2002) Two-mica and tourmaline leucogranites from the Everest–Makalu region (Nepal–Tibet). Himalayan leucogranite genesis by isobaric heating? Lithos 62 (3–4):125–150

  • Wang LX, Ma CQ, Zhang C, Zhang JY, Marks MAW (2014) Genesis of leucogranite by prolonged fractional crystallization: A case study of the Mufushan complex, South China. Lithos 206–207:147–163

    Article  Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Constrib Mineral Petrol 152:743–754

    Article  Google Scholar 

  • Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB (2007) Pre-eruption recharge of the Bishop magma system. Geology 35:235–238

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and compositional effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wiedenbeck MAPC, Alle P, Corfu F, Griffin WL, Meier M, Oberli FV, Quadt AV, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23

    Article  Google Scholar 

  • Williamson BJ, Shaw A, Downes H, Thirlwall MF (1996) Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central. France Chem Geol 127(1):25–42

    Article  Google Scholar 

  • Wolff JA (2021) Felsic Igneous Rocks. In: Alderton D, Elias SA (ed) Encyclopedia of Geology (Second Edition), Academic Press, pp 145–169

  • Wu FY, Liu ZC, Liu XC, Ji WQ (2015) Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrol Sin 31:1–36 (in Chinese with English abstract)

    Google Scholar 

  • Wu FY, Liu XC, Ji WQ, Wang JM, Yang L (2017) Highly fractionated granites: recognition and research. Sci China Earth Sci 60:1201–1219

    Article  Google Scholar 

  • Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP, He SX (2020) Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos 352:105319

    Article  Google Scholar 

  • Xiong X, Rao B, Chen F, Zhu J, Zhao Z (2002) Crystallization and melting experiments of a fluorine-rich leucogranite from the Xianghualin Pluton, South China, at 150 Mpa and H2O-saturated conditions. J Asian Earth Sci 21:175–188

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R (2002) Moho topography in the Central Andes and its geodynamic implications. Earth Planet Sci Lett 199:389–402

    Article  Google Scholar 

  • Zandt G, Leidig M, Chmielowski J, Baumont D, Yuan X (2003) Seismic Detection and Characterization of the Altiplano-Puna Magma Body, Central Andes. Pure Appl Geophys 160:789–807

    Article  Google Scholar 

  • Zhang HF, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T, King J (2004) Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett 228:195–212

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Roberto Liquín (CIT-Jujuy) and the late Paulino Cachizumba (IdGyM-UNJu) for preparation of thin sections and chemical analyses. Pedro Zambrana (IdGyM-UNJu) and Mauro Mingo are thanked for their help during fieldwork. We thank Franziska Wilke and Oona Appelt (GFZ Potsdam), as well as Sonja Storm (HIP, Heidelberg University) for their assistance with the electron microprobe and SIMS analyses, respectively. The authors thank D. Barrie Clarke and Beatriz Coira for their reviews that significantly improved the quality of the original manuscript.

Funding

This contribution was funded by the German—Argentinian STRATEGY Project (A.4.2), Secretaría de Ciencia, Técnica y Estudios Regionales—Universidad Nacional de Jujuy (SeCTER-UNJu E/0030), Consejo Nacional de Investigaciones Científicas y Técnicas (PIO UNJu 14020140100010CO) and Agencia Nacional de Promoción Científica y Técnica (PICT V 2014 3654 and PICT2016 N°0044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Jofré.

Ethics declarations

Conflicts of interest

The authors declare that they have not conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 14783 KB)

Supplementary file2 (XLSX 132 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jofré, C.B., Caffe, P.J., Trumbull, R.B. et al. Petrogenesis of peraluminous magmas in the Central Andean backarc: the Huayra Huasi Volcanic Complex, NW Argentina. Int J Earth Sci (Geol Rundsch) 110, 2725–2754 (2021). https://doi.org/10.1007/s00531-021-02076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02076-y

Keywords

Navigation