Skip to main content

Advertisement

Log in

Using Network Distance Analysis to Predict lncRNA–miRNA Interactions

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

LncRNA–miRNA interactions contribute to the regulation of therapeutic targets and diagnostic biomarkers in multifarious human diseases. However, it remains difficult to experimentally identify lncRNA–miRNA associations at large scale, and computational prediction methods are limited. In this study, we developed a network distance analysis model for lncRNA–miRNA association prediction (NDALMA). Similarity networks for lncRNAs and miRNAs were calculated and integrated with Gaussian interaction profile (GIP) kernel similarity. Then, network distance analysis was applied to the integrated similarity networks, and final scores were obtained after confidence calculation and score conversion. Our model obtained satisfactory results in fivefold cross validation, achieving an AUC of 0.8810 and an AUPR of 0.8315. Moreover, NDALMA showed superior prediction performance over several other network algorithms, and we tested the suitability and flexibility of the model by comparing different types of similarity. In addition, case studies of the relationships between lncRNAs and miRNAs were conducted, which verified the reliability of our method in predicting lncRNA–miRNA associations. The datasets and source code used in this study are available at https://github.com/Liu-Lab-Lnu/NDALMA.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927. https://doi.org/10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V (2013) Systematic transcriptome wide analysis of lncRNA–miRNA interactions. PLoS One 8(2):e53823. https://doi.org/10.1371/journal.pone.0053823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Achawanantakun R, Chen J, Sun Y, Zhang Y (2015) LncRNA-ID: long non-coding RNA IDentification using balanced random forests. Bioinformatics 31(24):3897–3905. https://doi.org/10.1093/bioinformatics/btv480

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Tian H, Yang J, Gong Z (2016) Long noncoding RNAs regulate cell growth, proliferation, and apoptosis. DNA Cell Biol 35(9):459–470. https://doi.org/10.1089/dna.2015.3187

    Article  CAS  PubMed  Google Scholar 

  5. Yang Z, Tang Y, Lu H, Shi B, Ye Y, Xu G, Zhao Q (2018) Long non-coding RNA reprogramming (lncRNA-ROR) regulates cell apoptosis and autophagy in chondrocytes. J Cell Biochem 119(10):8432–8440. https://doi.org/10.1002/jcb.27057

    Article  CAS  PubMed  Google Scholar 

  6. Farazi TA, Hoell JI, Morozov P, Tuschl T (2013) MicroRNAs in human cancer. In: MicroRNA cancer regulation. Springer, pp 1–20. https://doi.org/10.1007/978-94-007-5590-1_1

  7. Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20(1):5–20. https://doi.org/10.1038/s41580-018-0059-1

    Article  CAS  PubMed  Google Scholar 

  8. Chen X (2015) Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep 5(1):1–11. https://doi.org/10.1038/srep13186

    Article  CAS  Google Scholar 

  9. Ye S, Yang L, Zhao X, Song W, Wang W, Zheng S (2014) Bioinformatics method to predict two regulation mechanism: TF–miRNA–mRNA and lncRNA–miRNA–mRNA in pancreatic cancer. Cell Biochem Biophys 70(3):1849–1858. https://doi.org/10.1007/s12013-014-0142-y

    Article  CAS  PubMed  Google Scholar 

  10. Wu Q, Guo L, Jiang F, Li L, Li Z, Chen F (2015) Analysis of the mi RNA–mRNA–lnc RNA networks in ER+ and ER− breast cancer cell lines. J Cell Mol Med 19(12):2874–2887. https://doi.org/10.1111/jcmm.12681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi X, Zhang H, Wang M et al (2017) LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells. Oncotarget 8(35):58394. https://doi.org/10.18632/oncotarget.16880

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zheng B, Jeong S, Zhu Y, Chen L, Xia Q (2017) miRNA and lncRNA as biomarkers in cholangiocarcinoma (CCA). Oncotarget 8(59):100819. https://doi.org/10.18632/oncotarget.19044

    Article  PubMed  PubMed Central  Google Scholar 

  13. Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing miRNA–lncRNA interactions. In: Methods in molecular biology, vol 1402. Springer, pp 271–286. https://doi.org/10.1007/978-1-4939-3378-5_21

  14. Li N, Ponnusamy M, Li M-p, Wang K, Li P-F (2017) The role of microRNA and LncRNA–MicroRNA interactions in regulating ischemic heart disease. J Cardiovasc Pharmacol Ther 22(2):105–111. https://doi.org/10.1177/1074248416667600

    Article  CAS  PubMed  Google Scholar 

  15. Furió-Tarí P, Tarazona S, Gabaldón T, Enright AJ, Conesa A (2016) spongeScan: a web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Res 44(W1):W176–W180. https://doi.org/10.1093/nar/gkw443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao Y, Ma J, Xue Y et al (2015) Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer Lett 359(1):75–86. https://doi.org/10.1016/j.canlet.2014.12.051

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Q, Zhang Y, Hu H, Ren G, Zhang W, Liu H (2018) IRWNRLPI: integrating random walk and neighborhood regularized logistic matrix factorization for lncRNA–protein interaction prediction. Front Genet 9:239. https://doi.org/10.3389/fgene.2018.00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu H, Zhu C, Ai H, Zhang L, Zhao J, Zhao Q, Liu H (2017) LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction. Mol BioSyst 13(9):1781–1787. https://doi.org/10.1039/c7mb00290d

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Q, Yu H, Ming Z, Hu H, Ren G, Liu H (2018) The bipartite network projection-recommended algorithm for predicting long non-coding RNA–protein interactions. Mol Ther Nucleic Acids 13:464–471. https://doi.org/10.1016/j.omtn.2018.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu H, Zhang L, Ai H, Zhang H, Fan Y, Zhao Q, Liu H (2018) HLPI-ensemble: prediction of human lncRNA–protein interactions based on ensemble strategy. RNA Biol 15(6):797–806. https://doi.org/10.1080/15476286.2018.1457935

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Xie D, Wang L, Zhao Q, You Z-H, Liu H (2018) BNPMDA: bipartite network projection for MiRNA–disease association prediction. Bioinformatics 34(18):3178–3186. https://doi.org/10.1093/bioinformatics/bty333

    Article  CAS  PubMed  Google Scholar 

  22. Ge E, Yang Y, Gang M, Fan C, Zhao Q (2020) Predicting human disease-associated circRNAs based on locality-constrained linear coding. Genomics 112(2):1335–1342. https://doi.org/10.1016/j.ygeno.2019.08.001

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Q, Yang Y, Ren G, Ge E, Fan C (2019) Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations. IEEE Trans Nanobiosci 18(4):578–584. https://doi.org/10.1109/TNB.2019.2922214

    Article  Google Scholar 

  24. Huang Y-A, Chan KC, You Z-H (2018) Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34(5):812–819. https://doi.org/10.1093/bioinformatics/btx672

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Ren G, Hu H, Zhang L, Ai H, Zhang W, Zhao Q (2017) LPI-NRLMF: lncRNA–protein interaction prediction by neighborhood regularized logistic matrix factorization. Oncotarget 8(61):103975. https://doi.org/10.18632/oncotarget.21934

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miao Y-R, Liu W, Zhang Q, Guo A-Y (2018) lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res 46(D1):D276–D280. https://doi.org/10.1093/nar/gkx1004

    Article  CAS  PubMed  Google Scholar 

  27. Volders P-J, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesompele J, Mestdagh P (2015) An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 43(D1):D174–D180. https://doi.org/10.1093/nar/gku1060

    Article  CAS  PubMed  Google Scholar 

  28. Griffiths-Jones S (2010) miRBase: microRNA sequences and annotation. Curr Protoc Bioinform 29(1):12.19.11-12.19.10. https://doi.org/10.1002/0471250953.bi1209s29

    Article  Google Scholar 

  29. He S, Liu C, Skogerbø G et al (2007) NONCODE v2. 0: decoding the non-coding. Nucleic Acids Res 36(suppl_1):D170–D172. https://doi.org/10.1093/nar/gkm1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chou C-H, Chang N-W, Shrestha S et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247. https://doi.org/10.1093/nar/gkv1258

    Article  CAS  PubMed  Google Scholar 

  31. Yang S, Wang Y, Lin Y, Shao D, He K, Huang L (2020) LncMirNet: predicting LncRNA–miRNA interaction based on deep learning of ribonucleic acid sequences. Molecules 25(19):4372. https://doi.org/10.3390/molecules25194372

    Article  CAS  PubMed Central  Google Scholar 

  32. Wallin E, Wettergren C, Hedman F, von Heijne G (1993) Fast Needleman–Wunsch scanning of sequence databanks on a massively parallel computer. Bioinformatics 9(1):117–118. https://doi.org/10.1093/bioinformatics/9.1.117

    Article  CAS  Google Scholar 

  33. Chen X, Yan CC, Zhang X, You Z-H, Huang Y-A, Yan G-Y (2016) HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. Oncotarget 7(40):65257. https://doi.org/10.18632/oncotarget.11251

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gao M, Wu Z, Jiang F (2011) Userrank for item-based collaborative filtering recommendation. Inf Process Lett 111(9):440–446. https://doi.org/10.1016/j.ipl.2011.02.003

    Article  Google Scholar 

  35. Yang H, Zhu H, Ibrahim JG (2018) MILFM: Multiple index latent factor model based on high-dimensional features. Biometrics 74(3):834–844. https://doi.org/10.1111/biom.12866

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen X (2015) KATZLDA: KATZ measure for the lncRNA-disease association prediction. Sci Rep 5:16840. https://doi.org/10.1038/srep16840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hosseini SM, Soltani BM, Tavallaei M, Mowla SJ, Tafsiri E, Bagheri A, Khorshid HRK (2018) Clinically significant dysregulation of hsa-miR-30d-5p and hsa-let-7b expression in patients with surgically resected non-small cell lung cancer. Avicenna J. Med. Biotechnol. 10(2):98–104

    PubMed  PubMed Central  Google Scholar 

  38. Jiang Y, Gao H, Liu M, Mao Q (2016) Sorting and biological characteristics analysis for side population cells in human primary hepatocellular carcinoma. Am J Cancer Res 6(9):1890–1905

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ozen M, Karatas OF, Gulluoglu S et al (2015) Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression. Cancer Investig 33(6):251–258. https://doi.org/10.3109/07357907.2015.1025407

    Article  CAS  Google Scholar 

  40. Li L, Wang M, Mei Z, Cao W, Yang Y, Wang Y, Wen A (2017) lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother 96:165–172. https://doi.org/10.1016/j.biopha.2017.09.113

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No: 82003655), Key R&D Program of Liaoning Province (No: 2019JH2/10300041), Scientific Research Project from Department of Education of Liaoning Province (No: LQN201906), and Shenyang Science and Technology Plan Project (No: 17-65-7-00 and 20-203-6-00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Zhao or Hongsheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 5734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, P., Feng, H. et al. Using Network Distance Analysis to Predict lncRNA–miRNA Interactions. Interdiscip Sci Comput Life Sci 13, 535–545 (2021). https://doi.org/10.1007/s12539-021-00458-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00458-z

Keywords

Navigation