Skip to main content
Log in

Additives in Selective Reduction of Lateritic Nickel Ores: Sodium Sulfate, Sodium Carbonate, and Sodium Chloride

  • Original Article
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

In this work, the selective reduction of lateritic nickel ore was carried out using sodium sulfate, sodium carbonate, and sodium chloride as additives. The 5 wt% of anthracite coal, which contains 60.35% of fixed carbon and 1.9% of sulfur, was used as a reductant. All raw materials were mixed homogenously prior to the pelletization process into 10–15 mm of diameter. The reduction process was carried out to 50 g of pellets at 950 °C, 1050 °C, and 1150 °C for 60 min in a muffle furnace at atmospheric pressure. It continued with a wet magnetic separation process to separate ferronickel (concentrates) and impurities (tailings). Iron and nickel grade analysis was performed using XRF, while phase transformation and microstructure were analyzed with XRD and SEM–EDS. The results showed that the sodium sulfate was superior, resulting in the highest nickel grade in concentrate, i.e., 15.06%. The sulfidation mechanism, which could inhibit the metallization of iron, effectively increased the nickel grade in concentrate than decomposition of carbonate and chloridization process. The sulfur content in the reductant also influenced the selective reduction process. It promotes more sulfidation of iron, thus increasing the nickel grade in concentrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kim J, Dodbiba G, Tanno H, Okaya K, Matsuo S, Fujita T (2010) Calcination of low-grade laterite for concentration of Ni by magnetic separation. Miner Eng 23:282–288. https://doi.org/10.1016/j.mineng.2010.01.005

    Article  Google Scholar 

  2. Bunjaku A, Kekkonen M, Taskinen P, Holappa L (2011) Thermal behaviour of hydrous nickel–magnesium silicates when heating up to 750°C. Miner Process Ext Metall 120(3):139–146. https://doi.org/10.1179/1743285511Y.0000000011

    Article  Google Scholar 

  3. Barkas J (2010) Drivers and risks for nickel demand still relying on China. Proceedings of 7th China Nickel Conference, Shanghai, pp 1–19

  4. Rhamdhani M A, Chen J, Hidayat T, Jak E & Hayes P (2009) Advances in research on nickel production through the caron process. Proceedings of EMC, pp 899–913

  5. Moskalyk RR, Alfantazi AM (2002) Nickel laterite processing and electrowinning practice. Miner Eng 15:593–605. https://doi.org/10.1016/S0892-6875(02)00083-3

    Article  Google Scholar 

  6. Wills BA, Napier-Munn T (2006) Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery, 7th ed. Elsevier Science & Tecnology Books, Oxford

  7. Liu Z, Sun T, Wang X, Gao E (2015) Generation process of FeS and its inhibition mechanism on iron mineral reduction in selective direct reduction of laterite nickel ore. Int J Min Met Mater 22(9):901–906. https://doi.org/10.1007/s12613-015-1148-1

    Article  Google Scholar 

  8. Zhu DQ, Chul Y, Vining K, Hapugoda S, Douglas J, Pan J, Zheng GL (2012) Upgrading low nickel content laterite ores using selective reduction followed by magnetic separation. Int J Miner Process 106–109:1–7. https://doi.org/10.1016/j.minpro.2012.01.003

    Article  Google Scholar 

  9. Pickles CA (2003) Drying kinetics of nickeliferous limonitic laterite ores. Miner Eng 16:1327–1338. https://doi.org/10.1016/S0892-6875(03)00206-1

    Article  Google Scholar 

  10. Zhu DQ, Yu C, Hapugoda S, Vining K, Jian P (2012) Mineralogy and crystal chemistry of a low grade nickel laterite ore. T Nonferr Metal Soc 22:907–916. https://doi.org/10.1016/S1003-6326(11)61264-8

    Article  Google Scholar 

  11. Rao M, Li G, Jiang T, Luo J, Zhang Y, Fan X (2013) Carbothermic reduction of nickeliferous laterite ores for nickel pig iron production in China: a review. JOM 65(11):1573–1583. https://doi.org/10.1007/s11837-013-0760-7

    Article  Google Scholar 

  12. Li G, Luo J, Peng Z, Zhang Y, Rao M, Jiang T (2015) Effect of quaternary basicity on melting behaviour and ferronickel particles growth of saprolitic laterite ores in Krupp-Renn process. ISIJ Int 55:1828–1833. https://doi.org/10.2355/isijinternational.ISIJINT-2015-058

    Article  Google Scholar 

  13. Li G, Shi T, Rao M, Jiang T, Zhang Y (2012) Beneficiation of nickeliferrous laterite by reduction roasting in the presence of sodium sulfate. Miner Eng 32:19–26. https://doi.org/10.1016/j.mineng.2012.03.012

    Article  Google Scholar 

  14. Jiang M, Sun T, Liu Z, Kou J, Liu N, Zhang S (2013) Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process. Int J Miner Process 123:32–38. https://doi.org/10.1016/j.minpro.2013.04.005

    Article  Google Scholar 

  15. Zhou S, Wei Y, Li B, Wang H, Ma B, Wang C (2016) Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore. Sci Rep 6:1–12. https://doi.org/10.1038/srep29061

    Article  Google Scholar 

  16. Li Q, Cui Y, Zhu D, Zhu J, Pan J, Zhang H, Zheng G (2010) Study on selective reduction and magnetic separation of low-grade nickel laterite ore to produce high nickel concentrate. Proceedings of XXV International Mineral Processing Congress (IMPC), pp 1549–1556, Brisbane, Australia

  17. Kobayashi Y, Todoroki H, Tsuji H (2011) Melting behavior of nickel ore in a rotary kiln for ferronickel alloys. ISIJ Int 51:35–40. https://doi.org/10.2355/isijinternational.51.35

    Article  Google Scholar 

  18. Tang X, Liu R, Yao L, Ji Z, Zhang Y, Li S (2014) Ferronickel enrichment by fine particle reduction and magnetic separation from nickel laterite ore. Int J Min Met Mater 21:955–961. https://doi.org/10.1007/s12613-014-0995-5

    Article  Google Scholar 

  19. Elliot R, Pickles CA, Peacey J (2017) Ferronickel particle formation during the carbothermic reduction of a limonitic laterite ore. Miner Eng 100:166–176. https://doi.org/10.1016/j.mineng.2016.10.020

    Article  Google Scholar 

  20. Harris CT, Peacey JG, Pickles CA (2011) Selective sulphidation of a nickeliferous lateritic ore. Miner Eng 24:651–660. https://doi.org/10.1016/j.mineng.2010.10.008

    Article  Google Scholar 

  21. Elliot R, Rodrigues F, Pickles CA, Peacey J (2015) A two-stage thermal upgrading process for nickeliferous limonitic laterite ores. Can Metall Q 54:1–11. https://doi.org/10.1179/1879139515Y.0000000009

    Article  Google Scholar 

  22. Harris CT, Peacey JG, Pickles CA (2013) Selective sulphidation and flotation of nickel from a nickeliferous laterite ore. Miner Eng 54:21–31. https://doi.org/10.1016/j.mineng.2013.02.016

    Article  Google Scholar 

  23. Chen GJ, Shiau JS, Liu SH, Hwang WS (2016) Optimal combination of calcination and reduction conditions as well as Na2SO4 additive for carbothermic reduction of limonite ore. Mater Trans 57:1560–1566. https://doi.org/10.2320/matertrans.M2016072

    Article  Google Scholar 

  24. Rao M, Li G, Zhang X, Luo J, Peng Z, Jiang T (2016) Reductive roasting of nickel laterite ore with sodium sulphate for Fe-Ni production, part I: reduction/sulfidation characteristics. Sep Sci Technol 51:1408–1420. https://doi.org/10.1080/01496395.2016.1162173

    Article  Google Scholar 

  25. Rao M, Li G, Zhang X, Luo J, Peng Z, Jiang T (2016) Reductive roasting of nickel laterite ore with sodium sulphate for Fe-Ni production, part II: phase transformation and grain growth. Sep Sci Technol 51:1727–1735. https://doi.org/10.1080/01496395.2016.1166134

    Article  Google Scholar 

  26. Zhou S, Dong J, Lu C, Li B, Li F, Zhang B, Wang H, Wei Y (2017) Effect of sodium carbonate on phase transformation of high-magnesium laterite ore. Mater Trans 58:790–794. https://doi.org/10.2320/matertrans.M2016439

    Article  Google Scholar 

  27. Samadhi TW (2017) Thermochemical analysis of laterite ore alkali roasting: comparison of sodium carbonate, sodium sulfate, and sodium hydroxide. Proceedings of 1st International Process Metallurgy Conference (IPMC) 1805: 1–5. Bandung, Indonesia

  28. Wan-rong L, Xin-hai L, Qi-yang H, Zhi-xing W (2010) Pretreatment study on chloridizing segregation and magnetic separation of low-grade nickel laterites. T Nonferr Metal Soc 20:82–86. https://doi.org/10.1016/S1003-6326(10)60017-9

    Article  Google Scholar 

  29. Zhou S, Wei Y, Li B, Wang H, Ma B, Wang C (2016) Chloridization and reduction roasting of high-magnesium low-nickel oxide ore followed by magnetic separation to enrich feronickel concentrate. Metall Mater Trans B 47B:145–153. https://doi.org/10.1007/s11663-015-0478-8

    Article  Google Scholar 

  30. Matsuura H, Tsukihashi F (2008) Recovery of metals from steelmaking dust by selective chlorination–evaporation process. Trans Inst Min Metall C 117:123–128. https://doi.org/10.1179/174328508X290920

    Article  Google Scholar 

  31. Nurjaman F, Sa’adah A, Shofi A, Apriyana W, Suharno B (2018) The effect of additives and reductors in selective reduction process of laterite nickel ore. Jurnal Sains Materi Indonesia 20:8–14. https://doi.org/10.17146/jsmi.2018.20.1.5404

    Article  Google Scholar 

  32. Nurjaman F, Rahmahwati A, Karimy MF, Hastriana N, Shofi A, Herlina U, Suharno B, Ferdian D (2019) The role of sodium based additives on reduction process of nickel lateritic ore. IOP Conf Ser: Mater Sci Eng 478(2019):012001. https://doi.org/10.1088/1757-899X/478/1/012001

    Article  Google Scholar 

  33. Shofi A, Rahmahwati A, Nurjaman F, Suharno B (2019) Effect of reduction temperature and sodium-based additives on nickel upgrading process of laterites ores. IOP Conf Ser: Mater Sci Eng 541(2019):012002. https://doi.org/10.1088/1757-899X/541/1/012002

    Article  Google Scholar 

  34. Elliot R, Pickles CA, Foster J (2016) Thermodynamics of the reduction roasting of nickeliferous laterite ores. J Miner Mater Charact Eng 4:320–346. https://doi.org/10.4236/jmmce.2016.46028

    Article  Google Scholar 

  35. Lu J, Liu S, Shangguan J, Du W, Pan F, Yang S (2013) The effect of sodium sulphate on the hydrogen reduction process of nickel laterite ore. Miner Eng 49:154–164. https://doi.org/10.1016/j.mineng.2013.05.023

    Article  Google Scholar 

  36. Li Y, Sun Y, Han Y, Gao P (2013) Coal-based reduction mechanism of low-grade laterite ore. T Nonferr Metal Soc 23:3428–3433. https://doi.org/10.1016/S1003-6326(13)62884-8

    Article  Google Scholar 

  37. Liu W, Li X, Hu Q, Wang Z, Gu K, Li J, Zhang L (2010) Pretreatment study on chloridizing segregation and magnetic separation of low-grade nickel laterites. Trans Nonferrous Met Soc China 20:s82–s86. https://doi.org/10.1016/S1003-6326(10)60017-9

    Article  Google Scholar 

  38. Zevgolis E, Zografidis C, Halikia I (2010) The reducibility of the greek nickeliferous laterites: a review. Trans Inst Min Metall C 119(1):9–17. https://doi.org/10.1179/174328509X431472

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Indonesian Ministry of Research and Technology/National Research and Innovation Agency for funding this research, Metallurgy and Materials Engineering Department, University of Indonesia, for microstructure analysis testing laboratory, and LIPI’s science services for research laboratories.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: B.S. and F.N.; experiment: C.R and F.N.; funding acquisition: F.N. and A.S.; writing—original draft: C.R; writing—review and editing: B.S. and F.N. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to B. Suharno.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suharno, B., Nurjaman, F., Ramadini, C. et al. Additives in Selective Reduction of Lateritic Nickel Ores: Sodium Sulfate, Sodium Carbonate, and Sodium Chloride. Mining, Metallurgy & Exploration 38, 2145–2159 (2021). https://doi.org/10.1007/s42461-021-00456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-021-00456-1

Keywords

Navigation