Skip to main content
Log in

Shape-Supervised Super-Resolution Convolutional Neural Network for Melt Droplet Images

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The containerless method is generally used to study the intrinsic properties of materials, especially the thermophysical properties of melt droplets. The calculation of the melt droplet density and thermal expansion coefficient is related to its volume, while density is the dependent variable for determining the surface tension and viscosity coefficient. Evidently, the accuracy of the thermophysical properties of materials essentially depend on the precision of volume measurement. The melt droplet volume is obtained by analysing the image, thus, the precise volume of the melt droplet depends on the image quality and contour extraction algorithm. Restricted by external conditions, most of the obtained melt droplet images are of low quality and are severely polluted by noise, which complicates the determination of the thermophysical characteristics. Herein, a shape-supervised super-resolution convolutional neural network method is presented to improve image resolution and using its sub-network to extract the contour of the melt droplet directly and accurately. Compared with the existing method, this approach improves the accuracy of evaluating the thermophysical properties of the material and reduces the computational complexity by simplifying the two-step calculation process to a one-step procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Brungs, S., Egli, M., Wuest, S.L., et al.: Facilities for simulation of microgravity in the ESA ground-based facility programme[J]. Microgravity Sci. Technol. 28(3), 191–203 (2016)

    Article  Google Scholar 

  • Chen, Y., Tai, Y., Liu, X., et al.: Fsrnet: End-to-end learning face super-resolution with facial priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2492–2501 (2018)

  • Dong, C., Loy, C.C., He, K., et al.: Image super-resolution using deep convolutional networks[J]. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  • Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network[C]//European conference on computer vision. Springer, Cham, 391–407 (2016)

  • Dong, W., Zhang, L., Lukac, R., et al.: Sparse representation based image interpolation with nonlocal autoregressive modeling[J]. IEEE Trans. Image Process. 22(4), 1382–1394 (2013)

    Article  MathSciNet  Google Scholar 

  • Emel’yanenko, A.M., Boinovich, L.B.: The use of digital processing of video images for determining parameters of sessile and pendant droplets[J]. Colloid J. 63(2), 159–172 (2001)

    Article  Google Scholar 

  • Goodman, J.W., Cox, M.E.: Introduction to Fourier optics. Physics Today 22(4) (1969)

  • He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778 (2016)

  • Huang, T., Tsai, R.: Multi-frame image restoration and registration. Adv. Comput. vis. Image Process. 1, 2 (1984)

    Google Scholar 

  • Ishikawa, T., Paradis, P.F., et al.: Non-contact thermophysical property measurements of refractory metals using an electrostatic levitator [J]. Measurement Science and Technology, 16(2):443–443 (2005)

  • Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 1646–1654 (2016)

  • Lamb, H.: On the oscillations of a viscous spheroid[J]. Proc. Lond. Math. Soc. 1(1), 51–70 (1881)

    Article  MathSciNet  Google Scholar 

  • Ledig, C., Theis, L., Huszár, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 4681–4690 (2017)

  • Lee, G.W., Jeon, S., Park, C., et al.: Crystal–liquid interfacial free energy and thermophysical properties of pure liquid Ti using electrostatic levitation: Hypercooling limit, specific heat, total hemispherical emissivity, density, and interfacial free energy[J]. J. Chem. Thermodyn. 63, 1–6 (2013)

    Article  Google Scholar 

  • Lyubimova, T., Parshakova, Y.: Onset of Thermal Buoyancy Convection in a Two-Layer System with Deformable Interface and Fixed Heat Flux at the Boundaries under Terrestrial and Microgravity Conditions. Microgravity Sci. Technol. 32(3), 295–304 (2020)

    Article  Google Scholar 

  • Ma, C., Jiang, Z., Rao, Y., et al.: Deep face super-resolution with iterative collaboration between attentive recovery and landmark estimation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 5569–5578 (2020)

  • Newell, A., Yang, K.., Deng, J.: Stacked hourglass networks for human pose estimation[C]//European conference on computer vision. Springer, Cham, 483–499 (2016)

  • Novakovic, R., Mohr, M., Giuranno, D., et al.: Surface Properties of Liquid Al-Ni Alloys: Experiments Vs Theory[J]. Microgravity Sci. Technol. 32(6), 1049–1064 (2020)

    Article  Google Scholar 

  • Paradis, P.F., Ishikawa, T., Yoda, S.: Ground-based thermophysical property measurements of supercooled and liquid platinum-group metals by electrostatic levitation[J]. Microgravity Sci. Technol. 16(1–4), 94–98 (2005)

  • Paradis, P.F., Ishikawa, T., Koike, N.: Thermophysical properties of molten yttrium measured by non-contact techniques[J]. Microgravity Sci. Technol. 21(1), 113–118 (2009)

    Article  Google Scholar 

  • Putra, N.K., Dickinson, R.J., Siggers, J.H.: Image processing as the validation method of droplet dispersion modeling process[C]//2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME). IEEE, 2013: 242–245 (2013)

  • Rayleigh, L.: On the capillary phenomena of jets [J]. Proc. R. Soc. London 29(196–199), 71–97 (1879)

    Google Scholar 

  • Sang, L., Luo, Y., Chu, G.W., et al.: Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: A visual study[J]. Chem. Eng. Sci. 158, 429–438 (2017)

    Article  Google Scholar 

  • Schmidt-Hohagen, F., Egry, I., Wunderlich, R., et al.: Surface tension measurements of industrial iron-based alloys from ground-based and parabolic flight experiments: Results from the thermolab project[J]. Microgravity-Science and Technology 18(3), 77–81 (2006)

    Article  Google Scholar 

  • Weil, W., Guo, S., Wu, F., et al.: Image processing-based measurement of volume for droplets in the microfluidic system[C]//2013 ICME International Conference on Complex Medical Engineering. IEEE, 518–522 (2013)

  • Wu, C.Z., Hu, C.S., Zhang, M.J., et al.: Single image super-resolution reconstruction via supervised multi-dictionary learning [J]. Opto-Electronic Engineering 43(11), 69–75 (2016)

    Google Scholar 

  • Xue, C., Feng, Y., Yu, Q.: The image processing of droplet for evaporation experiment in SJ-10[J]. Microgravity Sci. Technol. 29(3), 221–228 (2017)

    Article  Google Scholar 

  • Yang, J., Wright, J., Huang, T., et al.: Image super-resolution as sparse representation of raw image patches[C]//2008 IEEE conference on computer vision and pattern recognition. IEEE, 1–8 (2008)

  • Yu, Q., Cai, S., Z., et al.: Droplet Image Feedback Control System in Evaporation Experiment [J]. Microgravity Sci. Technol. 22(2), 139–144 (2010)

  • Zou, Z., Luo, X., Yu, Q.: Droplet image super resolution based on sparse representation and kernel regression[J]. Microgravity Sci. Technol. 30(3), 321–329 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project No.U1738104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lu, X., Wang, X. et al. Shape-Supervised Super-Resolution Convolutional Neural Network for Melt Droplet Images. Microgravity Sci. Technol. 33, 48 (2021). https://doi.org/10.1007/s12217-021-09890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09890-8

Keywords

Navigation