Skip to main content
Log in

Physical Modeling of Rotary Flux Injection in an Aluminum Melting Furnace

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To reduce the environmental impact during purification of molten aluminum, an environmentally friendly flux is being considered as a potential replacement for the highly toxic chlorine-containing gas currently used. However, the reactivity of the flux is much lower relative to the gases, resulting in low-efficiency purification. Here, a new approach using water modeling was implemented to investigate mass transfer between molten aluminum and the flux during rotary flux injection. Silicon oil, air, and water were used as a model flux, gas, and aluminum melt, respectively. The oil and air were injected into the water bath through the shaft of a rotary impeller. Mass transfer between the oil and water was enhanced with increasing impeller rotation rate. The major enhancement mechanism was entrainment and dispersion of oil droplets from the oil layer floating on the water surface. There was a threshold for the impeller rotation rate, which significantly increased the volumetric mass transfer coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.E. Schlesinger: Aluminum recycling. 2nd ed. CRC Press, Boca Raton, 2017.

    Google Scholar 

  2. J.F. Bilodeau, Y. Kocaefe: Light Metals 2001, pp. 1009-1015.

  3. L.I. Kiss, J.F. Bilodeau: Proc. of Conference On Metallurgists 2001, 2001, Toronto.

  4. F. Kerdouss, L. Kiss, P. Proulx, J.F. Bilodeau, and C. Dupuis: Int. J. Chem. Reactor Eng., 2005, vol. 3, p. A35. https://doi.org/10.2202/1542-6580.1217.

    Article  Google Scholar 

  5. V.S. Warke, G. Tryggvason, and M.M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 112–8. https://doi.org/10.1016/j.jmatprotec.2004.10.017.

    Article  CAS  Google Scholar 

  6. E. Mancilla, W. Cruz-Méndez, M.A. Ramírez-Argáez, C. González-Rivera, and G. Ascanio: Can. J. Chem. Eng., 2019, vol. 97, pp. 1729–40. https://doi.org/10.1002/cjce.23432.

    Article  CAS  Google Scholar 

  7. G. Gao, M. Wang, D. Shi, and Y. Kang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1997–2005. https://doi.org/10.1007/s11663-019-01607-y.

    Article  CAS  Google Scholar 

  8. E.R. Gómez, R. Zenit, C.G. Rivera, G. Trápaga, and M.A. Ramírez-Argáez: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 423–35. https://doi.org/10.1007/s11663-012-9774-8.

    Article  CAS  Google Scholar 

  9. E.R. Gómez, R. Zenit, C.G. Rivera, G. Trápaga, and M.A. Ramírez-Argáez: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 974–83. https://doi.org/10.1007/s11663-013-9845-5.

    Article  CAS  Google Scholar 

  10. E. Mancilla, W. Cruz-Méndez, I.E. Garduño, C. González-Rivera, M.A. Ramírez-Argáez, and G. Ascanio: Chem. Eng. Res. Des., 2017, vol. 118, pp. 158–65. https://doi.org/10.1016/j.cherd.2016.11.031.

    Article  CAS  Google Scholar 

  11. D. Abreu-López, A. Amaro-Villeda, A. Acosta-González, C. González-Rivera, and M.A. Ramírez-Argáez: Metals., 2017, vol. 7, p. 132. https://doi.org/10.3390/met7040132.

    Article  CAS  Google Scholar 

  12. J. Svizelová, M. Tkadlecková, K. Michalek, J. Walek, M. Saternus, J. Pieprzyca, T. Merder: Arch. Metall. Mater., 2019, vol. 64, pp. 659–64.

  13. B.B. Wan, W. Chen, M. Mao, Z. Fu, and D. Zhu: J. Mater. Process. Technol., 2018, vol. 251, pp. 330–42. https://doi.org/10.1016/j.jmatprotec.2017.09.001.

    Article  CAS  Google Scholar 

  14. T. Yamamoto, A. Suzuki, S.V. Komarov, and Y. Ishiwata: J. Mater. Process. Technol., 2018, vol. 261, pp. 164–72. https://doi.org/10.1016/j.jmatprotec.2018.06.012.

    Article  CAS  Google Scholar 

  15. T. Yamamoto, Y. Fang, S.V. Komarov: Chem. Eng. Sci., 2019a., vol. 197, pp. 26-36. https://doi.org/10.1016/j.ces.2018.12.007

  16. T. Yamamoto and S.V. Komarov: Chem. Eng. Sci., 2019, vol. 207, pp. 1007–16. https://doi.org/10.1016/j.ces.2018.12.007.

    Article  CAS  Google Scholar 

  17. M. Hernández-Hernández, J.L. Camacho-Martínez, C. González-Rivera, and M.A. Ramírez-Argáez: J. Mater. Process. Technol., 2016, vol. 236, pp. 1–8. https://doi.org/10.1016/j.jmatprotec.2016.04.031.

    Article  CAS  Google Scholar 

  18. D. Abreu-López, A. Dutta, J.L. Camacho-Martínez, G. Trápaga-Martínez, and M.A. Ramírez-Argáez: JOM., 2018, vol. 70, pp. 2958–67. https://doi.org/10.1007/s11837-018-3147-y.

    Article  CAS  Google Scholar 

  19. D. Shi, Z. Du, A. Wang, G. Gao, and M. Wang: Res. Phys., 2020, vol. 19, 103386. https://doi.org/10.1016/j.rinp.2020.103386.

    Article  Google Scholar 

  20. J. Walek, K. Michalek, M. Tkadleckova, and M. Saternus: Metals., 2021, vol. 11, p. 284. https://doi.org/10.3390/met11020284.

    Article  CAS  Google Scholar 

  21. M. Saternus: J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, pp. 285–90. .

    Google Scholar 

  22. J.L. Song, M.R. Jolly, M. Kimata, W. Bujalski, A.W. Nienow: Proc. of Third International Conference on CFD in the Minerals and Process Industries, 2003, Melbourne, Australia, 10-12 December.

  23. W. Bujalski, M. Kimata, N. Nayan, J.L. Song, M.R. Jolly, and A.W. Nienow: Chem. Eng. Technol., 2004, vol. 27, pp. 310–4. https://doi.org/10.1002/ceat.200401982.

    Article  CAS  Google Scholar 

  24. F. Chiti, A. Paglianti, and W. Bujalski: Chem. Eng. Res. Des., 2004, vol. 82, pp. 1105–11. https://doi.org/10.1205/cerd.82.9.1105.44156.

    Article  CAS  Google Scholar 

  25. T. Yamamoto, K. Kato, S.V. Komarov, Y. Ueno, M. Hayashi, and Y. Ishiwata: J. Mater. Process. Technol., 2018, vol. 259, pp. 409–15. https://doi.org/10.1016/j.jmatprotec.2018.04.025.

    Article  CAS  Google Scholar 

  26. M.D. Maniruzzaman and M.M. Makhlouf: Metall. Mater. Trans. B., 2002, vol. 33B, pp. 297–303. https://doi.org/10.1007/s11663-002-0013-6.

    Article  CAS  Google Scholar 

  27. V.S. Warke, S. Shankar, and M.M. Makhlouf: J. Mater. Process. Technol., 2005, vol. 168, pp. 119–26. https://doi.org/10.1016/j.jmatprotec.2004.10.016.

    Article  CAS  Google Scholar 

  28. O. Mirgaux, D. Ablitzer, E. Waz, and J.P. Bellot: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 363–75. .

    Article  CAS  Google Scholar 

  29. S.T. Johansen, S. Graadahl, and T.F. Hagelien: Appl. Math. Model., 2004, vol. 28, pp. 63–77. .

    Article  Google Scholar 

  30. R.R. Bagherpour-Torghabeh and H. Doostmohammadi: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 3456–69. .

    Article  Google Scholar 

  31. T. Yamamoto, Y. Fang, and S.V. Komarov: Chem. Eng. J., 2019, vol. 367, pp. 25–36. https://doi.org/10.1016/j.cej.2019.02.130.

    Article  CAS  Google Scholar 

  32. T. Yamamoto, W. Kato, S.V. Komarov, and Y. Ishiwata: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 2547–56. https://doi.org/10.1007/s11663-019-01681-2.

    Article  CAS  Google Scholar 

  33. K. Kato, T. Yamamoto, S.V. Komarov, R. Taniguchi, and Y. Ishiwata: Mater. Trans., 2019, vol. 60, pp. 2008–15. https://doi.org/10.2320/matertrans.M2019055.

    Article  CAS  Google Scholar 

  34. T. Yamamoto, K. Kato, S.V. Komarov, R. Taniguchi, and Y. Ishiwata: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1836–46. https://doi.org/10.1007/s11663-020-01842-8.

    Article  CAS  Google Scholar 

  35. H. Ni, B. Sun, H. Jiang, and W. Ding: Mater. Sci. Eng. A., 2003, vol. 352, pp. 294–9. https://doi.org/10.1016/S0921-5093(02)00900-0.

    Article  CAS  Google Scholar 

  36. Y. Ohno: Proc. of International Conference on Aluminum Alloys, 2010, September 5-9, Yokohama, Japan.

  37. K. Nakanishi, Y. Kato, T. Nozaki, and T. Emi: Tetsu-To-Hagané., 1980, vol. 66, pp. 1307–16. https://doi.org/10.2355/tetsutohagane1955.66.9_1307.

    Article  CAS  Google Scholar 

  38. M. Martín, M. Rendueles, and M. Díaz: Chem. Eng. Res. Des., 2005, vol. 83, pp. 1076–84. https://doi.org/10.1205/cherd.02156.

    Article  CAS  Google Scholar 

  39. S. Ghorai, G.G. Roy, and S.K. Roy: ISIJ Int., 2004, vol. 44, pp. 37–42. https://doi.org/10.2355/isijinternational.44.37.

    Article  CAS  Google Scholar 

  40. S.K., Ajmani, A. Chatterjee: Ironmak. Steelmak., 2005, vol. 32, pp. 515-27. https://doi.org/10.1179/174328105X48188

  41. V. Singh, S.N. Lenka, S.K. Ajmani, C. Bhanu, and S. Pathak: ISIJ Int., 2009, vol. 49, pp. 1889–94. https://doi.org/10.2355/isijinternational.49.1889.

    Article  CAS  Google Scholar 

  42. J.O. Hinze: AIChE J., 1955, vol. 1, pp. 289–95. https://doi.org/10.1002/aic.690010303.

    Article  CAS  Google Scholar 

  43. C.A. Coulaloglou and L.L. Tavlarides: AIChE J., 1976, vol. 22, pp. 289–97. https://doi.org/10.1002/aic.690220211.

    Article  CAS  Google Scholar 

  44. S. Nagata: Mixing: principles and applications. Halsted Press, New York, 1975.

    Google Scholar 

  45. A. Busciglio, G. Caputo, and F. Scargiali: Chem. Eng. Sci., 2013, vol. 104, pp. 868–80. https://doi.org/10.1016/j.ces.2013.10.019.

    Article  CAS  Google Scholar 

  46. S.S. Deshpande, K.K. Kar, J. Walker, J. Pressler, and W. Su: Chem. Eng. Sci., 2017, vol. 168, pp. 495–506. https://doi.org/10.1016/j.ces.2017.04.002.

    Article  CAS  Google Scholar 

  47. W. Ranz and W. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141–6. .

    CAS  Google Scholar 

  48. M. Leitner, T. Leitner, A. Schmon, K. Aziz, G. Pottlacher: Metall. Mater. Trans. A, vol. 48A, pp. 3036-3045. http://dx.doi.org/https://doi.org/10.1007/s11661-017-4053-6

  49. R.R. Roy, J. Ye, and Y. Sahai: Mater. Trans., 1997, vol. 38, pp. 566–70. https://doi.org/10.2320/matertrans1989.38.566.

    Article  CAS  Google Scholar 

  50. F.A. Guevara, B.B. Mclnteer, and W.E. Wageman: Phys. Fluids., 1969, vol. 12, pp. 2493–505. https://doi.org/10.1063/1.1692386.

    Article  CAS  Google Scholar 

  51. A. Silny, T.A. Utigard: Light Metals 1997, pp. 871-78.

  52. R.R. Roy and T.A. Utigard: Metall. Mater. Trans. B., 1998, vol. 29B, pp. 821–7. https://doi.org/10.1007/s11663-998-0141-8.

    Article  CAS  Google Scholar 

  53. K. Kovacova and D. Grman: Kovove Mater., 1979, vol. 17, pp. 144–51. .

    CAS  Google Scholar 

  54. E. Gamsjäger, J. Svoboda, F.D. Fischer, and M. Rettenmayr: Acta Mater., 2007, vol. 55, pp. 2599–607. https://doi.org/10.1016/j.actamat.2006.12.002.

    Article  CAS  Google Scholar 

  55. J.M.P.Q. Delgado: J. Phs. Eqil. Diff., 2007, vol. 28, pp. 427–32. .

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 6, 2021; accepted June 17, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, T., Takahashi, H., Komarov, S.V. et al. Physical Modeling of Rotary Flux Injection in an Aluminum Melting Furnace. Metall Mater Trans B 52, 3363–3372 (2021). https://doi.org/10.1007/s11663-021-02265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02265-9

Navigation