Skip to main content
Log in

In Situ Observation of the Dissolution of Al2O3 Particles in CaO-Al2O3-SiO2 Slags

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 26 July 2021

This article has been updated

Abstract

The dissolution of Al2O3 particles in CaO-Al2O3-SiO2 slags was investigated by confocal scanning laser microscope at the temperature range from 1723 K to 1853 K. It was found that the rate-limiting step was the diffusion in the liquid slag. The dissolution of Al2O3 particles in CaO-Al2O3-SiO2 slags with various temperatures, CaO/Al2O3, and CaO/SiO2 in slag was in situ observed. Increasing the C/A and C/S of slag promoted the absorption of Al2O3 inclusions by the CaO-Al2O3-SiO2 slag, but only if the slag was pure liquid at the refining temperature. A model related to dissolution driving force and slag viscosity was shown to be v = 18.716 × ΔC/η to predict the dissolution rate of Al2O3. Effective binary diffusion coefficients for various CaO-Al2O3-rich slags were obtained using the developed model. The dissolution rate of Al2O3 in CaO-Al2O3-SiO2 slags with low SiO2 content at the steelmaking temperature was predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. [1] L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-91.

    Article  CAS  Google Scholar 

  2. [2] B.G. Thomas and L. Zhang: ISIJ Int., 2001, vol. 41, pp. 1181-93.

    Article  CAS  Google Scholar 

  3. [3] L. Zhang, S. Taniguchi and K. Cai: Metall. Mater. Trans. B, 2000, vol. 31, pp. 253-66.

    Article  CAS  Google Scholar 

  4. [4] J. Strandh, K. Nakajima, R. Eriksson and P. Jonsson: ISIJ Int., 2005, vol. 45, pp. 1597-606.

    Article  CAS  Google Scholar 

  5. [5] Y. Park, Y. Cho, W. Cha and Y. Kang: J. Am. Cearm. Soc., 2020, vol. 103, pp. 2210-24.

    Article  CAS  Google Scholar 

  6. [6] A.R. Cooper and W.D. Kingery: J. Am. Cearm. Soc., 1964, vol. 47, pp. 37-43.

    Article  CAS  Google Scholar 

  7. [7] K. Sandhage and G. Yurek: J. Am. Cearm. Soc., 1990, vol. 73, pp. 3633-42.

    Article  CAS  Google Scholar 

  8. [8] S. Taira, K. Nakashima and K. Mori: ISIJ Int., 1993, vol. 33, pp. 116-23.

    Article  CAS  Google Scholar 

  9. [9] J.Y. Choi, H.G. Lee and J.S. Kim: ISIJ Int., 2002, vol. 42, pp. 852-60.

    Article  CAS  Google Scholar 

  10. [10] J. Li, Q. Shu, Y. Liu and K. Chou: Ironmak. Steelmak., 2014, vol. 41, pp. 732-37.

    Article  CAS  Google Scholar 

  11. [11] K. Goto, B.B. Argent and W.E. Lee: J. Am. Cearm. Soc., 2005, vol. 80, pp. 461-71.

    Article  Google Scholar 

  12. [12] W.D. Cho and P. Fan: ISIJ Int., 2004, vol. 44, pp. 229-34.

    Article  CAS  Google Scholar 

  13. [13] H. Zuo, C. Wang and Y. Liu: Ceram. Int., 2017, vol. 43, pp. 7080-87.

    Article  CAS  Google Scholar 

  14. [14] Z. Li, B. Jia, Y. Zhang, S. He, Q. Wang and Q. Wang: Ceram. Int., 2019, vol. 45, pp. 4035-42.

    Article  CAS  Google Scholar 

  15. [15] S. Sridhar and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 406-10.

    Article  CAS  Google Scholar 

  16. [16] M. Valdez, K. Prapakorn, A.W. Cramb and S. Sridhar: Ironmak. Steelmak., 2002, vol. 29, pp. 47-52.

    Article  CAS  Google Scholar 

  17. [17] K.W. Yi, C. Tse, J.H. Park, M. Valdez, A.W. Cramb and S. Sridhar: Scand. J. Metall., 2003, vol. 32, pp. 177-84.

    Article  CAS  Google Scholar 

  18. [18] A.B. Fox, M. Valdez, J. Gisby, R.C. Atwood, P.D. Lee and S. Sridhar: ISIJ Int., 2004, vol. 44, pp. 836-45.

    Article  CAS  Google Scholar 

  19. [19] B.J. Monaghan and L. Chen: Steel Res. Int., 2005, vol. 76, pp. 348-54.

    Article  CAS  Google Scholar 

  20. [20] B.J. Monaghan, L. Chen and J. Sorbe: Ironmak. Steelmak., 2005, vol. 32, pp. 258-64.

    Article  CAS  Google Scholar 

  21. [21] J.H. Park, I.H. Jung and H.G. Lee: ISIJ Int., 2006, vol. 46, pp. 1626-34.

    Article  CAS  Google Scholar 

  22. [22] J. Liu, F. Verhaeghe, M. Guo, B. Blanpain and P. Wollants: J. Am. Cearm. Soc., 2007, vol. 90, pp. 3818-24.

    CAS  Google Scholar 

  23. [23] F. Verhaeghe, J. Liu, M. Guo, S. Arnout, B. Blanpain and P. Wollants: Appl. Phys. Lett., 2007, vol. 91, pp. 124104.

    Article  CAS  Google Scholar 

  24. [24] P. Yan, B.A. Webler, P.C. Pistorius and R.J. Fruehan: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2414.

    Article  CAS  Google Scholar 

  25. [25] H. Soll-Morris, C. Sawyer, Z. Zhang, G.N. Shannon, J. Nakano and S. Sridhar: Fuel, 2009, vol. 88, pp. 670-82.

    Article  CAS  Google Scholar 

  26. [26] J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1961-72.

    Article  CAS  Google Scholar 

  27. [27] Y. Lee, J.K. Yang, D.J. Min and J.H. Park: Ceram. Int., 2019, vol. 45, pp. 20251-57.

    Article  CAS  Google Scholar 

  28. [28] S. Feichtinger, S.K. Michelic, Y.B. Kang and C. Bernhard: J. Am. Cearm. Soc., 2014, vol. 97, pp. 316-25.

    Article  CAS  Google Scholar 

  29. [29] T. Tian, Y. Zhang, H. Zhang, K. Zhang, J. Li and H. Wang: Int. J. Appl. Ceram. Technol., 2019, vol. 16, pp. 1078-87.

    Article  CAS  Google Scholar 

  30. [30] J.H. Park, J.G. Park, D.J. Min, Y.E. Lee and Y. Kang: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 3181-86.

    Article  CAS  Google Scholar 

  31. [31] X. Guo, Z. Sun, J.V. Dyck, M. Guo and B. Blanpain: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 6325-33.

    Article  CAS  Google Scholar 

  32. [32] Z. Sun, X. Guo, D.J. Van, M. Guo and B. Blanpain: AICHE J., 2016, vol. 59, pp. 2907-16.

    Article  CAS  Google Scholar 

  33. [33] B.J. Monaghan and L. Chen: Ironmak. Steelmak., 2006, vol. 33, pp. 323-30.

    Article  CAS  Google Scholar 

  34. [34] K. Miao, A. Haas, M. Sharma, W. Mu and N. Dogan: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1612-23.

    Article  CAS  Google Scholar 

  35. [35] M. Sharma, W. Mu and N. Dogan: JOM, 2018, vol. 70, pp. 1220-24.

    Article  CAS  Google Scholar 

  36. M. Sharma, W. Mu and N. Dogan: Alstech, 2018, vol. 2018, pp. 2601–08.

    Google Scholar 

  37. [37] M. Sharma, H.A. Dabkowska and N. Dogan: Steel Res. Int., 2019, vol. 90, pp. 1800367.

    Article  CAS  Google Scholar 

  38. [38] O. Levenspiel: Chemical Reaction Engineering, 3rd ed., Wiley, New York, 1998, pp. 566-88.

    Google Scholar 

  39. [39] M.J. Whelan: Met. Sci. J., 1969, vol. 3, pp. 95-97.

    Article  CAS  Google Scholar 

  40. [40] H.B. Aaron, D. Fainstein and G.R. Kotler: Appl. Phys, 1970, vol. 41, pp. 4404-10.

    Article  Google Scholar 

  41. [41] L.C. Brown: Appl. Phys, 1976, vol. 47, pp. 449-58.

    Article  Google Scholar 

  42. [42] F. Verhaeghe, S. Arnout, B. Blanpain and P. Wollants: Phys. Rev. E, 2005, vol. 72, pp. 036308.

    Article  CAS  Google Scholar 

  43. [43] F. Verhaeghe, S. Arnout, B. Blanpain and P. Wollants: Phys. Rev. E, 2006, vol. 73, pp. 036316.

    Article  CAS  Google Scholar 

  44. [44] F. Verhaeghe, J. Liu, M. Guo, S. Arnout, B. Blanpain and P. Wollants: Appl. Phys. Lett., 2007, vol. 91, pp. 124104.

    Article  CAS  Google Scholar 

  45. [45] F. Verhaeghe, B. Blanpain and P. Wollants: Model. Simul. Mater. Sci. Eng., 2008, vol. 16, pp. 045007.

    Article  CAS  Google Scholar 

  46. [46] F. Verhaeghe, J. Liu, M. Guo, S. Arnout, B. Blanpain and P. Wollants: J. Appl. Phys., 2008, vol. 103, pp. 023506.

    Article  CAS  Google Scholar 

  47. [47] S.H. Lee, C. Tse, K.W. Yi, P. Misra, V. Chevrier, C. Orrling, S. Sridhar and A.W. Cramb: J. Non-Cryst. Solids., 2001, vol. 282, pp. 41-48.

    Article  CAS  Google Scholar 

  48. [48] B.J. Monaghan and L. Chen: J. Non-Cryst. Solids., 2004, vol. 347, pp. 254-61.

    Article  CAS  Google Scholar 

  49. [49] S. Michelic, J. Goriupp, S. Feichtinger, Y.B. Kang, C. Bernhard and J. Schenk: Steel Res. Int., 2016, vol. 87, pp. 57-67.

    Article  CAS  Google Scholar 

  50. [50] M. Sharma and N. Dogan: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1-11.

    Google Scholar 

  51. [51] K.C. Mills and B.J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1-120.

    Article  CAS  Google Scholar 

  52. [52] M. Valdez, G.S. Shannon and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450-57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Nature Science Foundation of China (Grant No. U1860206, No. 51725402), Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-17-001C2 and FRF-TP-19-037A2Z), the S&T Program of Hebei (Grant Nos. 20311004D, 20311005D, 20311006D, 20591001D), the High Steel Center (HSC) at Yanshan University, and Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM) and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Zhang or Ying Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In this article Songjie Wu was incorrectly denoted as corresponding author.

Manuscript submitted 11 January 2021; accepted 7 June 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., Zhang, L., Zhang, J. et al. In Situ Observation of the Dissolution of Al2O3 Particles in CaO-Al2O3-SiO2 Slags. Metall Mater Trans B 52, 3288–3301 (2021). https://doi.org/10.1007/s11663-021-02256-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02256-w

Navigation