Skip to main content
Log in

Electrochemical Characterization of Sulphide Minerals–Halophilic Bacteria Surface Interaction for Bioflotation Applications

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effects of halophilic bacteria (Halobacillus sp. and Marinobacter sp.) on pyrite and chalcopyrite surface oxidation in artificial seawater are studied by electrochemical impedance spectroscopy (EIS) in conjunction with X-ray diffraction (XRD) and cyclic voltammetry analysis (CV), in order to explain the influence of these microorganisms on the minerals floatability. EIS analyses on pyrite electrodes suggest that biomaterial from both bacteria adheres to the mineral surface, which is reinforced by CV experiments as capacitive currents are promoted by both bacteria. Additionally, XRD analyses of pyrite samples after immersion in artificial seawater with and without bacteria indicate the formation of hematite on the mineral surface in the presence of Halobacillus sp., which together with the adherence of biomaterial could promote the depression of pyrite during flotation. On the other hand, EIS and CV analyses on chalcopyrite electrodes suggest that the adherence of Halobacillus sp. and Marinobacter sp. to the surface of the mineral have no significant effects on the kinetics of the chalcopyrite oxidation processes. These results together with XRD analyses of the chalcopyrite samples after immersion in artificial seawater with and without bacteria suggest that superficial sulphur might have a stronger influence on chalcopyrite flotability than the presence of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. All the potentials presented in this work are referred to this electrode, unless noted otherwise.

References

  1. 1 C. Owusu, S. Brito, W. Skinner, J. Addai-mensah, and M. Zanin: Miner. Eng., 2014, vol. 55, pp. 87–95.

    Article  CAS  Google Scholar 

  2. X.-H. Wang and K.S. Ericorssberg: Int. J. Miner. Process., 1991, vol. 33, pp. 275–90.

    Article  CAS  Google Scholar 

  3. 3 S.K. Behera and A.F. Mulaba-Bafubiandi: Miner. Eng., 2019, vol. 131, pp. 336–41.

    Article  Google Scholar 

  4. 4 R.I. Jeldres, L. Forbes, and L.A. Cisternas: Miner. Process. Extr. Metall. Rev., 2016, vol. 37, pp. 369–84.

    Article  CAS  Google Scholar 

  5. 5 R.M. Pytkowicz and E. Atlas: Limnol. Oceanogr., 1975, vol. 20, pp. 222–9.

    Article  CAS  Google Scholar 

  6. 6 P. Patra and K. Natarajan: Int. J. Miner. Process., 2008, vol. 88, pp. 53–8.

    Article  CAS  Google Scholar 

  7. 7 S.K. Behera and A.F. Mulaba-Bafubiandi: Miner. Process. Extr. Metall. Rev., 2017, vol. 38, pp. 96–105.

    Article  CAS  Google Scholar 

  8. F. Sanartín, W. Kracht, and T. Vargas: Miner. Eng., 2018, vol. 117, pp. 127–31.

    Article  Google Scholar 

  9. G. Luque Consuegra, S. Kutschke, M. Rudolph, and K. Pollmann: Miner. Eng., 2020, vol. 145, art. no. 106062.

  10. 10 D.R. Kester, I.W. Duedall, D.N. Connors, and R.M. Pytkowicz: Limnol. Oceanogr., 1967, vol. 12, pp. 176–9.

    Article  CAS  Google Scholar 

  11. 11 C.Y. Chen and E.G. Durbin: Mar. Ecol. Prog. Ser., 1994, vol. 109, pp. 83–94.

    Article  Google Scholar 

  12. 12 S. Gao, Q. Sun, Y. Tao, X. Wang, W. Li, L. Huan, M. Wu, and G. Wang: J. Exp. Mar. Bio. Ecol., 2016, vol. 475, pp. 144–53.

    Article  CAS  Google Scholar 

  13. 13 I.S. Semesi, J. Kangwe, and M. Björk: Estuar. Coast. Shelf Sci., 2009, vol. 84, pp. 337–41.

    Article  CAS  Google Scholar 

  14. 14 Y.M. Bar-On, R. Phillips, and R. Milo: Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, pp. 6506–11.

    Article  CAS  Google Scholar 

  15. 15 E.G. Biesta-Peters, M.W. Reij, H. Joosten, L.G.M. Gorris, and M.H. Zwietering: Appl. Environ. Microbiol., 2010, vol. 76, pp. 1399–405.

    Article  CAS  Google Scholar 

  16. 16 E. Marsili, J.B. Rollefson, D.B. Baron, R.M. Hozalski, and D.R. Bond: Appl. Environ. Microbiol., 2008, vol. 74, pp. 7329–37.

    Article  CAS  Google Scholar 

  17. 17 C.L. Caldeira, V.S.T. Ciminelli, A. Dias, and K. Osseo-Asare: Int. J. Miner. Process., 2003, vol. 72, pp. 373–86.

    Article  CAS  Google Scholar 

  18. 18 D. Bevilaqua, A.L.L.C. Leite, O. Garcia, and O.H. Tuovinen: Process Biochem., 2002, vol. 38, pp. 587–92.

    Article  CAS  Google Scholar 

  19. 19 E. Ahlberg, K.S.E. Forssberg, and X. Wang: J. Appl. Electrochem., 1990, vol. 20, pp. 1033–9.

    Article  CAS  Google Scholar 

  20. 20 J. Kang, T. Kim, Y. Tak, J.H. Lee, and J. Yoon: J. Ind. Eng. Chem., 2012, vol. 18, pp. 800–807.

    Article  CAS  Google Scholar 

  21. 21 E.C. Theil, T. Tosha, and R.K. Behera: Acc. Chem. Res., 2016, vol. 49, pp. 784–91.

    Article  CAS  Google Scholar 

  22. 22 D. Penas, A.S. Pereira, and P. Tavares: Angew. Chemie Int. Ed., 2019, vol. 58, pp. 1013–8.

    Article  CAS  Google Scholar 

  23. 23 W.H. Mulder, J.H. Sluyters, T. Pajkossy, and L. Nyikos: J. Electroanal. Chem., 1990, vol. 285, pp. 103–15.

    Article  CAS  Google Scholar 

  24. 24 S.Y. Shi, Z.H. Fang, and J.R. Ni: Electrochem. Commun., 2005, vol. 7, pp. 1177–82.

    Article  CAS  Google Scholar 

  25. 25 S. Deng and G. Gu: Electrochim. Acta, 2018, vol. 287, pp. 106–14.

    Article  CAS  Google Scholar 

  26. M.C. Romero, G. Ramos, I. González, and F. Ramírez: Appl. Biochem. Biotechnol., 10.1007/s12010-020-03386-8 (2010).

    Article  Google Scholar 

  27. 27 D. Bevilaqua, I. Diéz-Perez, C.S. Fugivara, F. Sanz, A. V. Benedetti, and O. Garcia: Bioelectrochemistry, 2004, vol. 64, pp. 79–84.

    Article  CAS  Google Scholar 

  28. 28 B. Boukamp: Solid State Ionics, 1993, vol. 62, pp. 131–41.

    Article  CAS  Google Scholar 

  29. 29 M. Schönleber and D. Klotz: Electrochim. Acta, 2014, vol. 131, pp. 20–27.

    Article  Google Scholar 

  30. 30 C. Heidel, M. Tichomirowa, and M. Junghans: Chem. Geol., 2013, vol. 342, pp. 29–43.

    Article  CAS  Google Scholar 

  31. 31 R.D. Knight, S. Roberts, and M.J. Cooper: Appl. Geochemistry, 2018, vol. 90, pp. 63–74.

    Article  CAS  Google Scholar 

  32. 32 R. V. Nicholson, R.W. Gillham, and E.J. Reardon: Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 1077–85.

    Article  CAS  Google Scholar 

  33. 33 K. Shrimali, V. Atluri, Y. Wang, S. Bacchuwar, X. Wang, and J.D. Miller: J. Colloid Interface Sci., 2018, vol. 524, pp. 337–49.

    Article  CAS  Google Scholar 

  34. 34 P. Velásquez, H. Gómez, D. Leinen, and J.R. Ramos-Barrado: Colloids Surfaces A Physicochem. Eng. Asp., 1998, vol. 140, pp. 177–82.

    Article  Google Scholar 

  35. 35 J.R. Gardner and R. Woods: Int. J. Miner. Process., 1979, vol. 6, pp. 1–16.

    Article  CAS  Google Scholar 

  36. 36 W. Tolley, D. Kotlyar, and R.. Van Wagoner: Miner. Eng., 1996, vol. 9, pp. 603–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the CONICYT-BMBF international cooperation project BMBF150026: “Bioflotation of Sulfides in Seawater: Evaluation of Potential Application of Biocomponents in Copper Ore Processing with Seawater (BS2)” and the CONICYT-PIA project AFB180004. Also, the authors thank Dr. Götz Haferburg from the Technical University Bergakademie Freiberg (TUBAF) for his collaboration on the isolation and initial characterization of the bacteria strains.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Colet-Lagrille.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 22, 2021; accepted June 19, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Poggini, S., Luque Consuegra, G., Kracht, W. et al. Electrochemical Characterization of Sulphide Minerals–Halophilic Bacteria Surface Interaction for Bioflotation Applications. Metall Mater Trans B 52, 3373–3382 (2021). https://doi.org/10.1007/s11663-021-02267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02267-7

Navigation