Skip to main content
Log in

Numerical Investigation of Slag Flow Through a Coke Funnel Analog and Packed Bed

  • Topical Collection: Science and Technology of Molten Slags, Fluxes, and Salts
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Molten slag is a critical material generated during blast furnace (BF) ironmaking. Slag flow behavior in the lower part of BF is closely related to the selection of charge materials, coke packed bed permeability, process stability, productivity, and hot metal quality. To better understand slag flow behavior, a numerical approach was applied to characterize the slag flow through a coke funnel analog and further, in a packed bed. The funnel analog was used to represent the flow of molten slag through the inter-particle voids of a coke packed bed. A critical funnel neck size, through which no slag flowed was experimentally established and confirmed by numerical modeling. The effect of wettability on slag flow shows the existence of an optimal contact angle for smooth slag flow in a funnel. The model was then applied to provide a deeper understanding of molten slag flow behavior in a packed bed, e.g., visualization of accumulation, coalescence, and breakup of slag at a particle scale. Specifically, the results show that the flow characteristics of discrete slag droplets in the packed bed require a particular quantitative approach for estimating the slag holdup. Packing structure, including pore size and particle shape, significantly affects the occurrence of slag blockage and droplet size, even when overall bed porosity is maintained constant. Slag flow along the vertical direction of the packed bed has a pseudo-steady percolation velocity. These results highlighted that this numerical approach is very helpful to understand the slag flow behavior at a particle scale, providing insight into the general features of slag flow as droplets or rivulets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

F:

Surface tension force, kg·m-2·s-2

g :

Gravitational acceleration, m·s-2

\( {\hat{\text{n}}}_{\text{iw}} \) :

Unit vector normal to the wall, -

p :

Pressure, Pa

t :

Time, s

\( {\hat{\text{t}}}_{\text{iw}} \) :

Unit vector tangential to the wall, -

u :

Velocity, m·s-1

ε i :

Volume fraction of phase i, -

θ iw :

Contact angle of phase i at the wall, deg

κ i :

Curvature of the interface, m-1

μ :

Viscosity, kg·m-1·s-1

ρ :

Density, kg·m-3

σ ij :

Surface tension between phases i and j, kg·s-2

τ :

Stress tensor, Pa

i :

Phase i

j :

Phase j

w :

Wall

References

  1. A.K. Biswas: Principles of Blast Furnace Ironmaking. Cootha Publishing House, Brisbane, Australia, 1981.

    Google Scholar 

  2. M. Hayashi, S. Sukenaga, K.I. Ohno, S. Ueda, K. Sunahara and N. Saito, Tetsu-To-Hagane 2014, vol. 100, pp. 211-226.

    Article  CAS  Google Scholar 

  3. T. Usui, H. Kawabata, Z.I. Morita and K. Masamori, ISIJ International 1993, vol. 33, pp. 687-696.

    Article  CAS  Google Scholar 

  4. T. Sugiyama, T. Nakagawa, H. Sibaike and Y. Oda, Tetsu to Hagane 1987, vol. 73, pp. 2044-2051.

    Article  CAS  Google Scholar 

  5. J.F. Elliott, R.A. Buchanan and J.B. Wagstaff, Journal of Metals 1952, vol. 194, pp. 709-717.

    Google Scholar 

  6. J. Szekely and J. Mendrykowski, Chemical Engineering Science 1972, vol. 27, pp. 959-963.

    Article  CAS  Google Scholar 

  7. N. Standish and J.B. Drinkwater, Journal of Metals 1972, vol. 24, pp. 43-45.

    CAS  Google Scholar 

  8. T. Fukutake and V. Rajakumar, Transactions of the Iron and Steel Institute of Japan 1982, vol. 22, pp. 355-364.

    Article  Google Scholar 

  9. T.S. Pham, D. Pinson, A.B. Yu and P. Zulli, Chemical Engineering Science 1999, vol. 54, pp. 5339-5345.

    Article  Google Scholar 

  10. G.S. Gupta, J.D. Litster, V.R. Rudolph, E.T. White and A. Domanti, ISIJ International 1996, vol. 36, pp. 32-39.

    Article  CAS  Google Scholar 

  11. S.J. Chew, G.X. Wang, A.B. Yu and P. Zulli, Ironmaking and Steelmaking 1997, vol. 24, pp. 392-400.

    CAS  Google Scholar 

  12. H. Kawabata, K. Shinmyou, T. Harada and T. Usui, ISIJ International 2005, vol. 45, pp. 1474-1481.

    Article  CAS  Google Scholar 

  13. Y. Bando, S. Hayashi, A. Matsubara and M. Nakamura, ISIJ International 2005, vol. 45, pp. 1461-1465.

    Article  CAS  Google Scholar 

  14. H. Ohgusu, Y. Sassa, Y. Tomita, K. Tanaka and M. Hasegawa, Tetsu to Hagane 1992, vol. 78, pp. 1164-1170.

    Article  CAS  Google Scholar 

  15. W.M. Husslage, M.A. Reuter, R.H. Heerema, T. Bakker and A.G.S. Steeghs, Metallurgical and Materials Transactions B 2005, vol. 36, pp. 765-776.

    Article  Google Scholar 

  16. I.H. Jeong, H.S. Kim and Y. Sasaki, ISIJ International 2013, vol. 53, pp. 2090-2098.

    Article  CAS  Google Scholar 

  17. D. Jang, M. Shin, J.S. Oh, H.S. Kim, S.H. Yi and J. Lee, ISIJ International 2014, vol. 54, pp. 1251-1255.

    Article  CAS  Google Scholar 

  18. H.L. George, B.J. Monaghan, R.J. Longbottom, S.J. Chew and P.R. Austin, ISIJ International 2013, vol. 53, pp. 1172-1179.

    Article  CAS  Google Scholar 

  19. H.L. George, R.J. Longbottom, S.J. Chew, D.J. Pinson and B.J. Monaghan, ISIJ International 2014, vol. 54, pp. 1790-1796.

    Article  CAS  Google Scholar 

  20. H.L. George, R.J. Longbottom, S.J. Chew and B.J. Monaghan, ISIJ International 2014, vol. 54, pp. 820-826.

    Article  CAS  Google Scholar 

  21. J.S. Oh and J. Lee, Journal of Materials Science 2016, vol. 51, pp. 1813-1819.

    Article  CAS  Google Scholar 

  22. M. Hino, T. Nagasaka, A. Katsumata, K.-I. Higuchi, K. Yamaguchi and N. Kon-No, Metallurgical and Materials Transactions B 1999, vol. 30, pp. 671-683.

    Article  Google Scholar 

  23. T. Sugiyama and M. Sugata, Nippon Steel Technical Report 1987, pp. 32-42.

  24. J. Szekely and Y. Kajiwara, Trans. Iron Steel Inst. Jpn. 1979, vol. 19, pp. 76-84.

    Article  CAS  Google Scholar 

  25. J. Wang, R. Takahashi and J. Yagi, Tetsu to Hagane 1991, vol. 77, pp. 1585-92.

    Article  CAS  Google Scholar 

  26. Y. Eto, K. Takeda, S. Miyagawa, H. Itaya and S. Taguchi, ISIJ international 1994, vol. 33, pp. 681-686.

    Article  Google Scholar 

  27. G.X. Wang, S.J. Chew, A.B. Yu and P. Zulli, Metallurgical and Materials Transactions B 1997, vol. 28, pp. 333-343.

    Article  Google Scholar 

  28. G.X. Wang, S.J. Chew, A.B. Yu and P. Zulli, ISIJ International 1997, vol. 37, pp. 573-582.

    Article  CAS  Google Scholar 

  29. S.J. Chew, P. Zulli and A. Yu, ISIJ International 2001, vol. 41, pp. 1112-1121.

    Article  CAS  Google Scholar 

  30. I.H. Jeong and S.M. Jung, ISIJ International 2016, vol. 56, pp. 537-545.

    Article  CAS  Google Scholar 

  31. D.D. Geleta, M.I.H. Siddiqui and J. Lee, Metallurgical and Materials Transactions B 2020, vol. 51, pp. 102-113.

    Article  CAS  Google Scholar 

  32. T. Kon, S. Natsui, S. Ueda, R. Inoue and T. Ariyama, ISIJ International 2012, vol. 52, pp. 1565-1573.

    Article  CAS  Google Scholar 

  33. T. Kon, S. Natsui, S. Ueda, R. Inoue and T. Ariyama, ISIJ International 2013, vol. 53, pp. 590-597.

    Article  CAS  Google Scholar 

  34. T. Kon, S. Natsui, S. Ueda and H. Nogami, ISIJ International 2015, vol. 55, pp. 1284-1290.

    Article  CAS  Google Scholar 

  35. S. Natsui, T. Kikuchi, R.O. Suzuki, T. Kon, S. Ueda and H. Nogami, ISIJ International 2015, vol. 55, pp. 1259-1266.

    Article  CAS  Google Scholar 

  36. S. Natsui, K.I. Ohno, S. Sukenaga, T. Kikuchi and R.O. Suzuki, ISIJ International 2018, vol. 58, pp. 282-291.

    Article  CAS  Google Scholar 

  37. S. Natsui, K. Tonya, H. Nogami, T. Kikuchi, R.O. Suzuki, K.I. Ohno, S. Sukenaga, T. Kon, S. Ishihara and S. Ueda, Processes 2020, vol. 8, pp. 221.

    Article  CAS  Google Scholar 

  38. S. Natsui, A. Sawada, H. Nogami, T. Kikuchi and R.O. Suzuki, ISIJ International 2020, vol. 60, pp. 1445-1452.

    Article  CAS  Google Scholar 

  39. S. Natsui, A. Sawada, H. Nogami, T. Kikuchi and R.O. Suzuki, ISIJ International 2020, vol. 60, pp. 1453-1460.

    Article  CAS  Google Scholar 

  40. X.F. Dong, A. Jayasekara, D. Sert, R. Ferreira, P. Gardin, B.J. Monaghan, S.J. Chew, D. Pinson and P. Zulli, Metallurgical and Materials Transactions B 2021, vol. 52, pp. 255-266.

    Article  CAS  Google Scholar 

  41. C.W. Hirt and B.D. Nichols, Journal of Computational Physics 1981, vol. 39, pp. 201-225.

    Article  Google Scholar 

  42. ANSYS Inc., ANSYS Fluent-19.1-User Online Manual; 2018.

  43. D.G. Holmes and S.D. Connell, 9th Computational Fluid Dynamics Conference, Buffalo, NY, USA, 1989.

  44. J.P. Van Doormaal and G.D. Raithby, Numerical Heat Transfer 1984, vol. 7, pp. 147-163.

    Google Scholar 

  45. S. Muzaferija, M. Peric, P. Sames and T. Schellin, 22nd Symposium on Naval Hydrodynamics, Washington, DC, USA, 1998, pp. 277-89.

  46. J.U. Brackbill, D.B. Kothe and C. Zemach, Journal of Computational Physics 1992, vol. 100, pp. 335-354.

    Article  CAS  Google Scholar 

  47. K.C. Mills: Slags Model (ed 1.07). National Physical Laboratory, UK, 1991.

  48. P.V. Riboud, Y. Roux, L.D. Lucas and H. Gaye, Fachberichte Huttenpraxis Metallweiterverarbeitung 1981, vol. 19, pp. 859-869.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Australian Research Council (ARC) through the Industrial Transformation Research Hubs Scheme under Project Number: IH130100017. The permissions from ArcelorMittal and BlueScope Ltd to publish are gratefully acknowledged. This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on March 22, 2021; accepted June 11, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X.F., Jayasekara, A., Sert, D. et al. Numerical Investigation of Slag Flow Through a Coke Funnel Analog and Packed Bed. Metall Mater Trans B 52, 2926–2938 (2021). https://doi.org/10.1007/s11663-021-02260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02260-0

Navigation