Skip to main content
Log in

On the Conditions for Onset and Development of Fog Over New Delhi: An Observational Study from the WiFEX

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Dense fog events and their micrometeorological characteristics and structural evolution at Indira Gandhi International Airport (IGIA), New Delhi, during the Winter Fog Experiment (WiFEX) are illustrated in this study. Four dense fog events that occurred in January 2016 for which visibility dropped below 200 m have been selected. Depending on the visibility and micrometeorological structure, the fog processes were classified into (i) an initial formation as a thermally stable optically thin fog and (ii) a subsequent mature, weakly unstable deep fog. Surface radiative cooling supported by a deep saturated layer in the nocturnal surface layer promotes the rapid development and intensification of the initial shallow fog into the extremely dense fog. Optically thin fog appeared to develop when a thin saturated layer of air formed near the ground under low-turbulence kinetic energy (< 0.1 m2/s2). The fog was sustained in the optically thin phase until the air at 20 m remained in a sub-saturated condition in the thermally stable surface layer. Furthermore, when the saturated layer near the surface progressively expanded upward as a result of sustained cooling inside the shallow fog, it rapidly transformed into an extremely dense fog. The threshold for transition from the optically thin phase to extremely dense phase appeared when the air at 20 m neared the saturation point. The dense fog observations for all cases indicate that when the saturated layer was deeper than 20 m, the fog was able to withstand larger turbulence intensity (TKE values between 0.4 m2/s2 and 0.5 m2/s2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Badarinath, K., Kharol, S., Sharma, A., & Roy, P. (2009). Fog over Indo-Gangetic plains—a study using multisatellite data and ground observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2, 185–195. https://doi.org/10.1109/JSTARS.2009.2019830

    Article  Google Scholar 

  • Bergot, T. (2013). Small-scale structure of radiation fog: a large-eddy simulation study. Quarterly Journal of the Royal Meteorological Society, 139(673), 1099–1112. https://doi.org/10.1002/qj.2051Bott A. (1991).

    Article  Google Scholar 

  • Bott, A. (1991). On the influence of the physico-chemical properties of aerosols on the life cycle of radiation fogs. Boundary-Layer Meteorology, 56(1–31), 1991. https://doi.org/10.1007/BF00119960

    Article  Google Scholar 

  • Boutle, I., Price, J., Kudzotsa, I., Kokkola, H., & Romakkaniemi, S. (2018). Aerosol–fog interaction and the transition to well-mixed radiation fog. Atmospheric Chemistry and Physics, 18(11), 7827–7840. https://doi.org/10.5194/acp-18-7827-2018

    Article  Google Scholar 

  • Croft, P. J. (2003). Fog. In J. R. Holton, J. A. Pyle, & J. A. Curry (Eds.), Encyclopedia of atmospheric sciences (pp. 777–792). Academic Press.

    Chapter  Google Scholar 

  • Cuxart, J., & Jimenez, M. A. (2012). Deep radiation fog in a wide closed valley: Study by numerical modeling and remote sensing. Pure and Applied Geophysics, 169, 911–926.

    Article  Google Scholar 

  • Derbyshire, S. H. (2019). Stable boundary layer relative humidity profiles and the conditions for onset of radiation fog over land. Quarterly Journal of the Royal Meteorological Society, 145(722), 2292–2307. https://doi.org/10.1002/qj.3558

    Article  Google Scholar 

  • Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T., & Sikka, D. R. (2015). Western disturbances: A review. Reviews of Geophysics, 53(2), 225–246. https://doi.org/10.1002/2014RG000460

    Article  Google Scholar 

  • Duynkerke, P. G. (1999). Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorology, 90, 447–477.

    Article  Google Scholar 

  • Forthun, G., Johnson, M., Schmitz, W., Blume, J., & Caldwell, R. (2006). Trends in fog frequency and duration in the southeast United States. Physical Geography, 27, 206–222. https://doi.org/10.2747/0272-3646.27.3.206

    Article  Google Scholar 

  • Fu, G. Q., Xu, W. Y., Yang, R. F., Li, J. B., & Zhao, C. S. (2014). The distribution and trends of fog and haze in the North China Plain over the past 30 years. Atmospheric Chemistry and Physics, 14(21), 11949–11958. https://doi.org/10.5194/acp-14-11949-2014

    Article  Google Scholar 

  • Fuzzi, S., Laj, P., Ricci, L., Orsi, G., Heintzenberg, J., Wendisch, M., Brink, H. M. ten. (1998). Overview of the Po valley fog experiment 1994 (CHEMDROP). Contributions to Atmospheric Physics, Vol. 71, No. 1, 01.02.1998, p. 3–19.

  • Ghude, S., Bhat, G., Prabha, T., Jenamani, R., Chate, D., Safai, P., & Rajeevan, M. (2017). Winter fog experiment over the Indo-Gangetic plains of India. Current Science, 112, 767. https://doi.org/10.18520/cs/v112/i04/767-784

    Article  Google Scholar 

  • Gultepe, Ismail, & Milbrandt, J. A. (2007). Microphysical Observations and Mesoscale Model Simulation of a Warm Fog Case during FRAM Project. Pure and Applied Geophysics, 164(2007), 1161–1178. https://doi.org/10.1007/s00024-007-0212-9.

    Article  Google Scholar 

  • Gultepe, I., Fernando, H. J. S., Pardyjak, E. R., Hoch, S. W., Silver, Z., Creegan, E., Leo, L. S., Pu, Z., De Wekker, S. F. J., & Hang, C. (2016). An overview of the MATERHORN fog project: Observations and predictability. Pure and Applied Geophysics, 173, 2983–3010. https://doi.org/10.1007/s00024-016-1347-0

    Article  Google Scholar 

  • Gultepe, I., Milbrandt, J., Belair, S. (2006). Visibility parameterization from microphysical observations for warm fog conditions and its application to Canadian MC2 mode. 86th AMS Annual Meeting, Atlanta, January 2006, USA.

  • Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., & Cober, S. G. (2009). The fog remote sensing and modeling field project. Bulletin of the American Meteorological Society, 90(3), 341–360. https://doi.org/10.1175/2008BAMS2354.1

    Article  Google Scholar 

  • Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., & Cober, S. G. (2007). Fog research: A review of past achievements and future perspectives. Pure and Applied Geophysics, 164(6), 1121–1159. https://doi.org/10.1007/s00024-007-0211-x

    Article  Google Scholar 

  • Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D., Chazette, P., & Zhang, X. (2009). Parisfog: Shedding new light on fog physical processes. Bulletin of the American Meteorological Society, 91(6), 767–783. https://doi.org/10.1175/2009BAMS2671.1

    Article  Google Scholar 

  • Haeffelin, M., Laffineur, Q., Bravo-Aranda, J.-A., Drouin, M.-A., Casquero-Vera, J.-A., Dupont, J.-C., & Backer, H. D. (2016). Radiation fog formation alerts using attenuated backscatter power from automatic lidars and ceilometers. Atmospheric Measurement Techniques, 9(11), 5347–5365. https://doi.org/10.5194/amt-9-5347-2016

    Article  Google Scholar 

  • Jenamani, R. K. (2007). Alarming rise in fog and pollution causing a fall in maximum temperature over New Delhi. Current Science, 93(3), 314–322.

    Google Scholar 

  • Jenamani, R. K., & Tyagi, A. (2011). Monitoring fog at IGI Airport and analysis of its runway-wise spatio-temporal variations using Meso-RVR network. Current Science, 100, 491–501.

    Google Scholar 

  • Kulkarni, R., Jenamani, R. K., Pithani, P., Konwar, M., Nigam, N., & Ghude, S. D. (2019). Loss to aviation economy due to winter fog in New Delhi during the winter of 2011–2016. Atmosphere, 10(4), 198. https://doi.org/10.3390/atmos10040198

    Article  Google Scholar 

  • Lala, G. G., Mandel, E., & Jiusto, J. E. (1975). A numerical evaluation of radiation fog variables. Journal of Atmospheric Sciences, 32, 720–728.

    Article  Google Scholar 

  • Li, Z. H., Huang, J. P., Sun, B. Y., & Peng, H. (1999). Burst characteristics during the development of radiation fog. Chinese Journal of Atmospheric Science, 23, 623–631.

    Google Scholar 

  • Lin, C., Zhang, Z., Pu, Z., & Wang, F. (2017). Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model. Journal of Meteorological Research, 31(5), 874–889. https://doi.org/10.1007/s13351-017-6187-2

    Article  Google Scholar 

  • Liu, D., Yang, J., Niu, S., & Li, Z. (2011). On the evolution and structure of a radiation fog event in Nanjing. Advances in Atmospheric Sciences, 28(1), 223–237. https://doi.org/10.1007/s00376-010-0017-0

    Article  Google Scholar 

  • Meyer, M. B., & Lala, G. G. (1990). Climatological aspects of radiation fog occurrence at Albany, New York. Journal of Climate, 3, 577–586.

    Article  Google Scholar 

  • Nakanishi, M. (2000). Large-eddy simulation of radiation fog. Boundary-Layer Meteorology, 94(3), 461–493. https://doi.org/10.1023/A:1002490423389

    Article  Google Scholar 

  • Pasricha, P. K., Gera, B. S., Shastri, S., Maini, H. K., John, T., Ghosh, A. B., & Garg, S. C. (2003). Role of the water vapour greenhouse effect in the forecasting of fog occurrence. Boundary-Layer Meteorology, 107(2), 469–482. https://doi.org/10.1023/A:1022128800130

    Article  Google Scholar 

  • Patil, M. N., Dharmaraj, T., Waghmare, R. T., Singh, S., Pithani, P., Kulkarni, R., Dhangar, N., Singh, D., Chinthalu, G. R., Singh, R., & Ghude, S. (2020). Observations of carbon dioxide and turbulent fluxes during fog conditions in north India. Journal of Earth System Science, 129, 51. https://doi.org/10.1007/s12040-019-1320-5

    Article  Google Scholar 

  • Pickering, K. E., & Jiusto, J. E. (1978). Observations of the relationship between dew and radiation fog. Journal of Geophysical Research., 83, 2430–2436.

    Article  Google Scholar 

  • Pithani, P., Ghude, S. D., Jenamani, R. K., Biswas, M., Naidu, C. V., Debnath, S., Kulkarni, R., Dhangar, N. G., Jena, C., Hazra, A., Phani, R., Mukhopadhyay, P., Prabhakaran, T., Nanjundiah, R. S., & Rajeevan, M. (2020). Real-time forecast of dense fog events over Delhi: The performance of the WRF model during the wifex field campaign. Weather and Forecasting, 35(2), 739–756. https://doi.org/10.1175/WAF-D-19-0104.1.

    Article  Google Scholar 

  • Pithani, P., Ghude, S., Naidu, C., Kulkarni, R., Steeneveld, G. J., Sharma, A., & Rajeevan, M. (2018). WRF model Prediction of a dense fog event occurred during Winter Fog Experiment (WIFEX). Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2053-0

    Article  Google Scholar 

  • Pithani, P., Ghude, S.D., Prabhakaran, T. & Rajeevan, M. (2019). WRF model sensitivity to choice of PBL and microphysics parameterization for an advection fog event at Barkachha, rural site in the Indo-Gangetic basin, India. Theor Appl Climatol 136, 1099–1113 (2019). https://doi.org/10.1007/s00704-018-2530-5

  • Price, J. D. (2011). Radiation fog. Part I: Observations of stability and drop size distributions. Boundery-Layer Meteorology, 139, 167–191. https://doi.org/10.1007/s10546-010-9580-2

    Article  Google Scholar 

  • Price, J. D. (2019). On the formation and development of radiation fog: An observational study. Boundary-Layer Meteorology, 172, 167–197. https://doi.org/10.1007/s10546-019-00444-5

    Article  Google Scholar 

  • Price, J. D., Lane, S., Boutle, I. A., Smith, D. K. E., Bergot, T., Lac, C., & Clark, R. (2018). LANFEX: A field and modeling study to improve our understanding and forecasting of radiation fog. Bulletin of the American Meteorological Society, 99(10), 2061–2077. https://doi.org/10.1175/BAMS-D-16-0299.1

    Article  Google Scholar 

  • Roach, W. T., Brown, R., Caughey, S. J., Garland, J. A., & Readings, C. J. (1976). The physics of radiation fog: I—a field study. Quality Journal of Royal Meteorological Society, 102, 313–333. https://doi.org/10.1002/qj.49710243204

    Article  Google Scholar 

  • Sachweh, M., & Koepke, P. (1997). Fog dynamics in an urbanized area. Theoretical and Applied Climatology, 58(1), 87–93. https://doi.org/10.1007/BF00867435

    Article  Google Scholar 

  • Sawaisarje, G. K., Khare, P., Shirke, C. Y., Deepakumar, S., & Narkhede, N. M. (2014). Study of winter fog over Indian subcontinent: Climatological perspectives. Mausam, 65(1), 19–22.

    Google Scholar 

  • Singh, A., George, J. P., & Iyengar, G. R. (2018). Prediction of fog/visibility over India using NWP Model. Journal of Earth System Science, 127(2), 26. https://doi.org/10.1007/s12040-018-0927-2

    Article  Google Scholar 

  • Sun, K. (2015). WRF-chem simulation of a severe haze episode in the Yangtze River Delta, China. Aerosol and Air Quality Research. https://doi.org/10.4209/aaqr.2015.04.0248

    Article  Google Scholar 

  • Syed, F., Körnich, H., & Tjernström, M. (2012). On the fog variability over South Asia. Climate Dynamics. https://doi.org/10.1007/s00382-012-1414-0

    Article  Google Scholar 

  • Tanaka, S., Kabe, I., Takebayashi, T., Endo, Y., Miyauchi, H., Nozi, K., & Omae, K. (1998). Environmental and biological monitoring of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123). Journal of Occupational Health, 40(4), 348–349.

    Article  Google Scholar 

  • Terradellas, E., & Bergot, T. (2007). Comparison between two single-column models designed for short-term fog and low-cloud forecasting. Física De La Tierra, 2007, 19.

    Google Scholar 

  • Zhang, G., Bian, L., Wang, J., Yang, Y., Yao, W., & Xu, X. (2005). The boundary layer characteristics in the heavy fog formation process over Beijing and its adjacent areas. Science in China, Series d: Earth Sciences, 48, 88–101. https://doi.org/10.1360/05yd0029

    Article  Google Scholar 

  • Zhou, B. (1987). The simulation modeling of radiation fog. Acta Meteorological Sinica, 113, 37–54. in Chinese.

    Google Scholar 

  • Zhou, B., & Ferrier, B. S. (2008). Asymptotic analysis of equilibrium in radiation fog. Journal of Applied Meteorology and Climatology, 47, 1704–1722. https://doi.org/10.1175/2007JAMC1685.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Winter Fog Experiment (WiFEX) team who worked hard on the installation of instruments and collected the data during the intense winter season, and are also thankful to the Director of IITM for providing all necessary facilities required in the campaign and study. Observational data used in this study were gathered as part of the MoES-IITM-IMD collaboration, which jointly conducted the Winter Fog Experiment (WiFEX) campaign funded by MoES. Satellite images from MODIS and INSAT-3D are used for the fog spatial representation. We acknowledge MOSDAC for INSAT-3D data products (http://www.mosdac.gov.in). Google Maps was used for the geographical representation of the observation site inside IGIA, New Delhi. Synoptic maps for the case study period were collected from the India Meteorological Department. Also, we appreciate the ECMWF for making available the reanalysis data of ERA5 to determine the variation in dew point depression over the IGP for the study period. We are thankful for all the logistic support and cooperation inside the airport from Grandhi Mallikarjuna Rao (GMR) group and the Airport Authority of India (AAI) to conduct the experiment at IGIA, New Delhi. The authors express their gratitude to for the use of the ERA interim data set, which was used to see moisture advection over the study area.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. M. Lal or Sachin D. Ghude.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhangar, N.G., Lal, D.M., Ghude, S.D. et al. On the Conditions for Onset and Development of Fog Over New Delhi: An Observational Study from the WiFEX. Pure Appl. Geophys. 178, 3727–3746 (2021). https://doi.org/10.1007/s00024-021-02800-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02800-4

Keywords

Navigation