Skip to main content
Log in

Preparation of multiple-spectra encoded polyphosphazene microspheres and application for antibody detection

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyphosphazene microspheres (PZS) multispectral encoded by fluorescence and surface enhanced Raman spectra (SERS) were prepared and used as solid phase carrier of capture antibody for antibody detection. A variety of fluorescent encoded polyphosphazene microspheres (FPZS) incorporating single and multiple fluorescent molecules were prepared. Multiple SERS encoded polyphosphazene microspheres (SPZS) were obtained by modification of different Raman reporters on the surface of PZS@Ag, which were fabricated with rough morphology through in situ deposition of Ag nanoparticles. Fluorescence and SERS spectral combined encoded polyphosphazene microspheres (FSPZS) were prepared by encoding of fluorescent molecules and SERS reporters. The optical signals in the two independent detection channels were separable and ensured the accuracy for the encoding method. Immunoassays of goat IgG, rabbit IgG and mouse IgG were performed by the as-prepared FPZS, SPZS and FSPZS as solid phase carrier of capture antibody and fluorescent labeled second antibody, using sandwich immunoassay method. The immunoassay results showed that the multiple-spectra encoded microspheres have stable and distinguishable encoding signals, large encoding volume and multiplexed analytical capability in sandwich immunoassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Scheme 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo Q, Wang Y, Chen C, Wei D, Fu J, Xu H, Gu H (2020) Multiplexed luminescence oxygen channeling immunoassay based on dual-functional barcodes with a host-guest structure: a facile and robust suspension array platform. Small 16:1907521

    Article  CAS  Google Scholar 

  2. Carl P, Sarma D, Gregorio BJR, Hoffmann K, Lehmann A, Rurack K, Schneider RJ (2019) Wash-free multiplexed mix-and-read suspension array fluorescence immunoassay for anthropogenic markers in wastewater. Anal Chem 91:12988–12996

    Article  CAS  PubMed  Google Scholar 

  3. Kim J, Biondi MJ, Feld JJ, Chan WCW (2016) Clinical validation of quantum dot barcode diagnostic technology. ACS Nano 10:4742–4753

    Article  CAS  PubMed  Google Scholar 

  4. Zhang XX, Chen GP, Bian FK, Cai LJ, Zhao YJ (2019) Encoded microneedle arrays for detection of skin interstitial fluid biomarkers. Adv Mater 31:8

    CAS  Google Scholar 

  5. Bian FK, Wu JD, Wang H, Sun LY, Shao CM, Wang Y, Li ZY, Wang XH, Zhao YJ (2018) Bioinspired photonic barcodes with graphene oxide encapsulation for multiplexed microrna quantification. Small 14:7

    Google Scholar 

  6. Zhang Y, Dong C, Su L, Wang H, Gong X, Wang H, Liu J, Chang J (2016) Multifunctional microspheres encoded with upconverting nanocrystals and magnetic nanoparticles for rapid separation and immunoassays. ACS Appl Mater Inter 8:745–753

    Article  CAS  Google Scholar 

  7. Yan ZY, Tian CQ, Qu XC, Shen WY, Ye BF (2017) DNA-functionalized photonic crystal microspheres for multiplex detection of toxic metal ions. Colloid Surf B-Biointerfaces 154:142–149

    Article  CAS  Google Scholar 

  8. Lehmann J, Rughwani P, Zhao A, Jiang W, Ji S, Sun B (2019) Novel bead-based multiplex assay for the quantification of human immune checkpoint biomarkers. Cancer Res 79:4117

    Article  Google Scholar 

  9. You LJ, Song LD, Huang C, Lu FF, Xu K, Zhang QQ (2019) Controllable preparation and high properties of fluorescence and surface enhanced raman spectra encoded poly(glycidyl methacrylate) microsphere. Express Polym Lett 13:37–51

    Article  CAS  Google Scholar 

  10. Zhi ZL, Morita Y, Hasan Q, Tamiya E (2003) Micromachining microcarrier-based biomolecular encoding for miniaturized and multiplexed immunoassay. Anal Chem 75:4125–4131

    Article  CAS  PubMed  Google Scholar 

  11. Guo QS, Bian FK, Liu YQ, Qu XJ, Hu XY, Sun QJ (2017) Hybridization chain reactions on silica coated Qbeads for the colorimetric detection of multiplex microRNAs. Chem Commun 53:4954–4957

    Article  CAS  Google Scholar 

  12. Leng YK, Wu WJ, Li L, Lin K, Sun K, Chen XY, Li WW (2016) Magnetic/fluorescent barcodes based on cadmium-free near-infrared-emitting quantum dots for multiplexed detection. Adv Funct Mater 26:7581–7589

    Article  CAS  Google Scholar 

  13. Falconnet D, She J, Tornay R, Leimgruber E, Bernasconi D, Lagopoulos L, Renaud P, Demierre N, van den Bogaard P (2015) Rapid, sensitive and real-time multiplexing platform for the analysis of protein and nucleic-acid biomarkers. Anal Chem 87:1582–1589

    Article  CAS  PubMed  Google Scholar 

  14. Sathe TR, Agrawal A, Nie S (2006) Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem 78:5627–5632

    Article  CAS  PubMed  Google Scholar 

  15. Sharma B, Frontiera RR, Henry AI, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15:16–25

    Article  CAS  Google Scholar 

  16. Huang C, Lu F, Xu K, Ding G, You L, Wang J, Zhang Q (2019) Synthesis of magnetic polyphosphazene-Ag composite particles as surface enhanced raman spectroscopy substrates for the detection of melamine. Chin Chem Lett 30:2009–2012

    Article  CAS  Google Scholar 

  17. Zhao X, Cui Y, He Y, Wang S, Wang J (2020) Synthesis of multi-mode quantum dots encoded molecularly imprinted polymers microspheres and application in quantitative detection for dopamine. Sens Actuat B-Chem 304:127265

    Article  CAS  Google Scholar 

  18. Li R, Zhang Y, Tan J, Wan J, Guo J, Wang C (2016) Dual-mode encoded magnetic composite microsphere based on fluorescence reporters and raman probes as covert tag for anticounterfeiting applications. ACS Appl Mater Inter 8:9384–9394

    Article  CAS  Google Scholar 

  19. You LJ, Li RM, Dong X, Wang F, Guo J, Wang CC (2017) Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection. J Colloid Interface Sci 488:109–117

    Article  CAS  PubMed  Google Scholar 

  20. Zong S, Tang H, Yang K, Wang H, Wang Z, Cui Y (2020) SERS-fluorescence-superresolution triple-mode nanoprobe based on surface enhanced Raman scattering and surface enhanced fluorescence. J Mater Chem B 8:8459–8466

    Article  CAS  PubMed  Google Scholar 

  21. Niu X, Chen H, Wang Y, Wang W, Sun X, Chen L (2014) Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Appl Mater Inter 6:5152–5160

    Article  CAS  Google Scholar 

  22. Wang Y, Chen L, Liu P (2012) Biocompatible triplex Ag@SiO2@mTiO2 core-shell nanoparticles for simultaneous fluorescence-sers bimodal imaging and drug delivery. Chem Eur J 18:5935–5943

    Article  CAS  PubMed  Google Scholar 

  23. Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon S-Y, Chen L, Choo J (2017) Simultaneous detection of dual prostate specific antigens using surface-enhanced raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11:4926–4933

    Article  CAS  PubMed  Google Scholar 

  24. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22:611–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lian W, Litherland SA, Badrane H, Tan W, Wu D, Baker HV, Gulig PA, Lim DV, Jin S (2004) Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem 334:135–144

    Article  CAS  PubMed  Google Scholar 

  26. Deshmukh K, Shaik MM, Ramanan SR, Kowshik M (2016) Self-activated fluorescent hydroxyapatite nanoparticles: a promising agent for bioimaging and biolabeling. ACS Biomater Sci Eng 2:1257–1264

    Article  CAS  PubMed  Google Scholar 

  27. Li N, Zhang W, Lin L, Shah SNA, Li Y, Lin JM (2019) Nongenetically encoded and erasable imaging strategy for receptor-specific glycans on live cells. Anal Chem 91:2600–2604

    Article  CAS  PubMed  Google Scholar 

  28. Bischof H, Rehberg M, Stryeck S, Artinger K, Eroglu E, Waldeck-Weiermair M, Gottschalk B, Rost R, Deak AT, Niedrist T, Vujic N, Lindermuth H, Prassl R, Pelzmann B, Groschner K, Kratky D, Eller K, Rosenkranz AR, Madl T, Plesnila N, Graier WF, Malli R (2017) Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat Commun 8:1–12

    Article  Google Scholar 

  29. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  PubMed  Google Scholar 

  30. Mulvihill MJ, Ling XY, Henzie J, Yang P (2010) Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc 132:268–274

    Article  CAS  PubMed  Google Scholar 

  31. Haruna K, Saleh TA, Hossain MK, Al-Saadi AA (2016) Hydroxylamine reduced silver colloid for naphthalene and phenanthrene detection using surface-enhanced Raman spectroscopy. Chem Eng J 304:141–148

    Article  CAS  Google Scholar 

  32. Mabbott S, Xu Y, Goodacre R (2017) Objective assessment of SERS thin films: comparison of silver on copper via galvanic displacement with commercially available fabricated substrates. Anal Methods 9:4783–4789

    Article  CAS  Google Scholar 

  33. Vidal-Iglesias FJ, Solla-Gullon J, Rodes A, Feliu JM, Perez JM (2015) Spectroelectrochemical behavior of 4-aminobenzenethiol on nanostructured platinum and silver electrodes. Surf Sci 631:213–219

    Article  CAS  Google Scholar 

  34. Blackie EJ, Le Ru EC, Etchegoin PG (2009) Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules. J Am Chem Soc 131:14466–14472

    Article  CAS  PubMed  Google Scholar 

  35. Blanco-Formoso M, Pazos-Perez N, Alvarez-Puebla RA (2020) Fabrication of plasmonic supercrystals and their SERS enhancing properties. ACS Omega 5:25485–25492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Zhou X, He Q, He Y, Guan T, Feng G, Wang B, Xie L, Ji Y (2020) Hydrogel-based microbeads for Raman-encoded suspension array using the reversed-phase suspension polymerization method and ultraviolet light curing. Anal Bioanal Chem 412:2731–2741

    Article  CAS  PubMed  Google Scholar 

  38. Kim J, Mohamed MAA, Zagorovsky K, Chan WCW (2017) State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials 146:97–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keisham B, Cole A, Nguyen P, Mehta A, Berry V (2016) Cancer cell hyperactivity and membrane dipolarity monitoring via raman mapping of interfaced graphene: toward non-invasive cancer diagnostics. ACS Appl Mater Inter 8:32717–32722

    Article  CAS  Google Scholar 

  40. Zhang Y, Chen W, Fu T, Sun J, Zhang D, Li Y, Zhang S, Xu H (2019) Simultaneous surface-enhanced resonant Raman and fluorescence spectroscopy of monolayer MoSe2: determination of ultrafast decay rates in nanometer dimension. Nano Lett 19:6284–6291

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Ma X, Wang Z (2019) Surface-enhanced Raman scattering-fluorescence dual-mode nanosensors for quantitative detection of cytochrome c in living cells. Anal Chem 91:6600–6607

    Article  CAS  PubMed  Google Scholar 

  42. Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130:12616–12617

    Article  CAS  PubMed  Google Scholar 

  43. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67

    Article  CAS  PubMed  Google Scholar 

  44. Ruan H, Wu X, Yang C, Li Z, Xia Y, Xue T, Shen Z, Wu A (2018) A supersensitive CTC analysis system based on triangular silver nanoprisms and SPION with function of capture, enrichment, detection, and release. ACS Biomater Sci Eng 4:1073–1082

    Article  CAS  PubMed  Google Scholar 

  45. Feng J, Chen L, Xia Y, Xing J, Li Z, Qian Q, Wang Y, Wu A, Zeng L, Zhou Y (2017) Bioconjugation of gold nanobipyramids for SERS detection and targeted photothermal therapy in breast cancer. ACS Biomater Sci Eng 3:608–618

    Article  CAS  PubMed  Google Scholar 

  46. Li M, Lin H, Paidi SK, Mesyngier N, Preheim S, Barman I (2020) A fluorescence and surface-enhanced Raman spectroscopic dual-modal aptasensor for sensitive detection of cyanotoxins. ACS Sens 5:1419–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu J-H, Wang CC (2010) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674–1679

    Article  CAS  PubMed  Google Scholar 

  48. Liu H, Qian X, Wu Z, Yang R, Sun S, Ma H (2016) Microfluidic synthesis of QD-encoded PEGDA microspheres for suspension assay. J Mater Chem B 4:482–488

    Article  CAS  PubMed  Google Scholar 

  49. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4.4’-(1,4-phenylenebis-methylylidenenitrilo) diphenol. Polym Bull 60:609–616

    Article  CAS  Google Scholar 

  50. Raghu AV, Gadaginamath GS, Aminabhavi TM (2005) Synthesis and characterization of novel polyurethanes based on 1,3-bis(hydroxymethyl) benzimidazolin-2-one and 1,3-bis(hydroxymethyl) benzimidazolin-2-thione hard segments. J Appl Polym Sci 98:2236–2244

    Article  CAS  Google Scholar 

  51. Grama S, Boiko N, Bilyy R, Klyuchivska O, Antonyuk V, Stoika R, Horak D (2014) Novel fluorescent poly(glycidyl methacrylate)-Silica microspheres. Eur Polym J 56:92–104

    Article  CAS  Google Scholar 

  52. Wang C, Zhao M, Li J, Yu J, Sun S, Ge S, Guo X, Xie F, Jiang B, Wujcik EK, Huang Y, Wang N, Guo Z (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271

    Article  CAS  Google Scholar 

  53. Agrawal G, Samal SK (2018) Raman spectroscopy for advanced polymeric biomaterials. ACS Biomater Sci Eng 4:1285–1299

    Article  CAS  PubMed  Google Scholar 

  54. Zhao D, Wu ZH, Yu J, Wang HZ, Li YG, Duan YR (2020) Highly sensitive microfluidic detection of carcinoembryonic antigen via a synergetic fluorescence enhancement strategy based on the micro/nanostructure optimization of ZnO nanorod arrays and in situ ZIF-8 coating. Chem Eng J 383:10

    Article  Google Scholar 

  55. Patil SB, Inamdar SZ, Das KK, Akamanchi KG, Patil AV, Inamadar AC, Reddy KR, Raghu AV, Kulkarni RV (2020) Tailor-made electrically-responsive poly(acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: synthesis, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 56:101525

    Article  CAS  Google Scholar 

  56. Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Akamanchi KG, Inamadar AC, Das KK, Kulkarni RV (2020) Functionally tailored electro sensitive poly(acrylamide)-g-pectin copolymer hydrogel for transdermal drug delivery application: synthesis, characterization, in-vivo and ex-vivo evaluation. Drug Deliv Lett 10:185–196

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 51503040), the Natural Science Foundation of Fujian Province, China (No.2018J01766, 2019J01254) and Fuzhou University Testing Fund of precious apparatus (No.2020T023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun You or Shaoyun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14917 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, G., Wang, A., Shi, X. et al. Preparation of multiple-spectra encoded polyphosphazene microspheres and application for antibody detection. Polym. Bull. 79, 6409–6429 (2022). https://doi.org/10.1007/s00289-021-03811-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03811-w

Keywords

Navigation