Skip to main content

Advertisement

Log in

Rapid and efficient uptake of aqueous lead pollutant using starch-based superabsorbent hydrogel

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The need for a viable and sustainable environment has triggered the increased preference for eco-friendly agro-based biosorbents to synthetic ones. In this study, a superabsorbent hydrogel (‘c-hydrogel’) synthesized from a renewable agro-based precursor via polyacrylonitrile (PAN) graft copolymerization and subsequent hydrolysis was utilized for aqueous lead [Pb(II)] uptake. The chemical structure (using Fourier transform infrared spectroscopy, FTIR equipment), surface morphology (using scanning electron microscopy, SEM equipment) and the physicochemical properties of the synthesized ‘c-hydrogel’ were investigated. Similarly, the effect of some process variables on the biosorbents’ adsorption capacity, as well as the process equilibrium and kinetics modelling, was also undertaken in the study. The isotherm data were best fitted to the Langmuir and Temkin model, with a maximum adsorption capacity of 264.37 mg/g and fast kinetics of 40 min at pH 5.0. Conversely, the kinetic data were well fitted to the pseudo-first-order model. The ‘c-hydrogel’ showed a high water absorbency of 550 g water/g ‘c-hydrogel’ and demonstrated effectiveness, as a renewable and eco-friendly biosorbent for the aqueous lead ion [Pb (II)] removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chakraborty R, Asthana A, Singh AK, Jain B, Susan ABH (2020) Adsorption of heavy metal ions by various low-cost adsorbents: a review. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1722811

    Article  Google Scholar 

  2. Aniagor CO, Menkiti MC (2020) Relational description of an adsorption system based on isotherm, adsorption density, adsorption potential, hopping number and surface coverage. Sigma 38(3):1073–1098

    Google Scholar 

  3. Hashem A, Abdel-Halim E, El-Tahlawy KF, Hebeish A (2005) Enhancement of the adsorption of Co (II) and Ni (II) ions onto peanut hulls through esterification using citric acid. Adsorpt Sci Technol 23(5):367–380

    CAS  Google Scholar 

  4. Hashem A, Aniagor C, Taha G, Fikry M (2021) Utilization of low-cost sugarcane waste for the adsorption of aqueous Pb(II): kinetics and isotherm studies. Curr Res Green Sustain Chem. https://doi.org/10.1016/j.crgsc.2021.100056

    Article  Google Scholar 

  5. Li Y-H, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357(3–4):263–266

    CAS  Google Scholar 

  6. Hashem A, Badawy SM (2015) Sesbania sesban L. biomass as a novel adsorbent for removal of Pb (II) ions from aqueous solution: non-linear and error analysis. Green Process Syn 4(3):179–190

    CAS  Google Scholar 

  7. Denizli A, Büyüktuncel E, Tuncel A, Bektas S, Genç Ö (2000) Batch removal of lead ions from aquatic solutions by polyethyleneglycol-methacrylate gel beads carrying cibacron blue F3GA. Environ Technol 21(6):609–614

    CAS  Google Scholar 

  8. Hashem A, Fletcher A, Younis H, Mauof H, Abou-Okeil A (2020) Adsorption of Pb (II) ions from contaminated water by 1, 2, 3, 4-butanetetracarboxylic acid-modified microcrystalline cellulose: Isotherms, kinetics, and thermodynamic studies. Int J Biol Macromol 164:3193–3203

    CAS  PubMed  Google Scholar 

  9. Mahmoud AM, Ibrahim FA, Shaban SA, Youssef NA (2015) Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egypt J Pet 24(1):27–35

    Google Scholar 

  10. Duan C, Ma T, Wang J, Zhou Y (2020) Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. J Water Process Eng 37:101339

    Google Scholar 

  11. Foong CY, Wirzal MDH, Bustam MA (2020) A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. J Mol Liq 297:111793

    CAS  Google Scholar 

  12. Zhao Z, Xiong Y, Cheng X, Hou X, Yang Y, Tian Y, You J, Xu L (2020) Adsorptive removal of trace thallium (I) from wastewater: a review and new perspectives. J Hazard Mater 393:122378

    CAS  PubMed  Google Scholar 

  13. Hosseini S, Alibakhshi H, Jashni E, Parvizian F, Shen J, Taheri M, Ebrahimi M, Rafiei N (2020) A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water. J Hazard Mater 381:120884

    CAS  PubMed  Google Scholar 

  14. Wu H, Wang W, Huang Y, Han G, Yang S, Su S, Sana H, Peng W, Cao Y, Liu J (2019) Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants. J Hazard Mater 371:592–602

    CAS  PubMed  Google Scholar 

  15. Awual MR, Alharthi NH, Hasan MM, Karim MR, Islam A, Znad H, Hossain MA, Halim ME, Rahman MM, Khaleque MA (2017) Inorganic-organic based novel nano-conjugate material for effective cobalt (II) ions capturing from wastewater. Chem Eng J 324:130–139

    CAS  Google Scholar 

  16. Abdel-Halim ES (2013) Preparation of starch/poly(N, N-Diethylaminoethyl methacrylate) hydrogel and its use in dye removal from aqueous solutions. React Funct Polym 73(11):1531–1536

    CAS  Google Scholar 

  17. Hashem A, Abdel-Halim E, Maauof H, Ramadan M, Abo-Okeil A (2007) Treatment of sawdust with polyamine for wastewater treatment. Energ Educ Sci Technol 19:45–58

    CAS  Google Scholar 

  18. Hashem A (2006) Amidoximated sunflower stalks (ASFS) as a new adsorbent for removal of Cu (II) from aqueous solution. Polym-Plast Technol Eng 45(1):35–42

    CAS  Google Scholar 

  19. Božić D, Gorgievski M, Stanković V, Štrbac N, Šerbula S, Petrović N (2013) Adsorption of heavy metal ions by beech sawdust–kinetics, mechanism and equilibrium of the process. Ecol Eng 58:202–206

    Google Scholar 

  20. Mohammed RR (2012) Removal of heavy metals from waste water using black teawaste. Arab J Sci Eng 37(6):1505–1520

    CAS  Google Scholar 

  21. Hashem A, Fletcher A, El-Sakhawy M, Mohamed LA, Farag S (2020) Aminated hydroximoyl camelthorn residues as a novel adsorbent for extracting Hg (II) from contaminated water: studies of isotherm, kinetics, and mechanism. J Polym Environ 28(9):2498–2510

    CAS  Google Scholar 

  22. Abdel-Halim E, Al-Deyab SS (2014) Preparation of poly (acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. React Funct Polym 75:1–8

    CAS  Google Scholar 

  23. Abdel-Halim E, Abou-Okeil A, Hashem A (2006) Adsorption of Cr (VI) oxyanions onto modified wood pulp. Polym-Plast Technol Eng 45(1):71–76

    CAS  Google Scholar 

  24. Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II). Carbohyd Polym 101:75–82

    CAS  Google Scholar 

  25. Abd El-Ghany NA, Mahmoud ZM (2020) Synthesis, characterization and swelling behavior of high-performance antimicrobial amphoteric hydrogels from corn starch. Polym Bull. https://doi.org/10.1007/s00289-020-03417-8

    Article  Google Scholar 

  26. Abd El-Ghany NA, Aziz MSA, Abdel-Aziz MM, Mahmoud Z (2019) Antimicrobial and swelling behaviors of novel biodegradable corn starch grafted/poly (4-acrylamidobenzoic acid) copolymers. Int J Biol Macromol 134:912–920

    CAS  PubMed  Google Scholar 

  27. Kjeldahl J (1883) Neue methode zur bestimmung des stickstoffs in organischen körpern. Z Anal Chem 22(1):366–382

    Google Scholar 

  28. Hashem A, Afifi M, El-Alfy E, Hebeish A (2005) Synthesis, characterization and saponification of poly (AN)-starch composites and properties of their hydrogels. Am J Appl Sci 2(3):614–621

    CAS  Google Scholar 

  29. Aniagor C, Menkiti M (2019) Synthesis, modification and use of lignified bamboo isolate for the renovation of crystal violet dye effluent. Appl Water Sci 9(4):77

    Google Scholar 

  30. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    CAS  Google Scholar 

  31. Vijayaraghavan K, Padmesh T, Palanivelu K, Velan M (2006) Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133(1–3):304–308

    CAS  PubMed  Google Scholar 

  32. Adamson AW, Gast AP (1967) Physical chemistry of surfaces, vol 150. Interscience publishers, New York

    Google Scholar 

  33. Temkin M (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta physiochim URSS 12:327–356

    CAS  Google Scholar 

  34. Radushkevich M (1947) The equation of the characteristic curve of the activated charcoal USSR. Phys Chem Sect 55:331

    Google Scholar 

  35. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Google Scholar 

  36. Khair U, Fahmi H, Al Hakim S, Rahim R (2017) Forecasting error calculation with mean absolute deviation and mean absolute percentage error. J Phys Conf Ser 930:012002

    Google Scholar 

  37. Ng J, Cheung W, McKay G (2002) Equilibrium studies of the sorption of Cu (II) ions onto chitosan. J Colloid Interface Sci 255(1):64–74

    CAS  PubMed  Google Scholar 

  38. Kapoor A, Yang R (1989) Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Sep Purif 3(4):187–192

    CAS  Google Scholar 

  39. Rivas F, Beltrán F, Gimeno O, Frades J, Carvalho F (2006) Adsorption of landfill leachates onto activated carbon: equilibrium and kinetics. J Hazard Mater 131(1–3):170–178

    CAS  PubMed  Google Scholar 

  40. Hashem A, Aniagor C, Hussein D, Farag S (2021) Application of novel butane-1, 4-dioic acid-functionalized cellulosic biosorbent for aqueous cobalt ion sequestration. Cellulose 28(6):3599–3615

    CAS  Google Scholar 

  41. Menkiti M, Aniagor C (2018) Parametric studies on descriptive isotherms for the uptake of crystal violet dye from aqueous solution onto lignin-rich adsorbent. Arab J Sci Eng 43(5):2375–2392

    CAS  Google Scholar 

  42. Nandiyanto ABD, Oktiani R, Ragadhita R (2019) How to read and interpret FTIR spectroscope of organic material. Indonesian J Sci Technol 4(1):97–118

    Google Scholar 

  43. Aniagor C, Abdel-Halim E, Hashem A (2021) Evaluation of the aqueous Fe (II) ion sorption capacity of functionalized microcrystalline cellulose. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105703:p.105703

    Article  Google Scholar 

  44. Hashem A, Aniagor CO, Nasr M, Abou-Okeil A (2021) Efficacy of treated sodium alginate and activated carbon fibre for Pb(II) adsorption. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.02.067:p.1-16

    Article  PubMed  Google Scholar 

  45. Hashem A, Abou-Okeil A, Fikry M, Aly A, Aniagor CO (2021) Isotherm and kinetics parametric studies for aqueous Hg(II) uptake onto n-[2-(methylamino)ethyl]ethane-1,2-diaminated acrylic fibre. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-05416-x

    Article  Google Scholar 

  46. Asuquo E, Martin A, Nzerem P, Siperstein F, Fan X (2017) Adsorption of Cd (II) and Pb (II) ions from aqueous solutions using mesoporous activated carbon adsorbent: equilibrium, kinetics and characterisation studies. J Environ Chem Eng 5(1):679–698

    CAS  Google Scholar 

  47. Oba SN, Ighalo JO, Aniagor CO, Igwegbe CA (2021) Removal of ibuprofen from aqueous media by adsorption: a comprehensive review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146608:p.146608

    Article  PubMed  Google Scholar 

  48. Igwegbe CA, Oba SN, Aniagor CO, Adeniyi AG, Ighalo JO (2020) Adsorption of ciprofloxacin from water: a comprehensive review. J Ind Eng Chem 93:57–77

    Google Scholar 

  49. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J colloid Interface Sci 47(3):755–765

    CAS  Google Scholar 

  50. Limousin G, Gaudet J-P, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22(2):249–275

    CAS  Google Scholar 

  51. Aniagor CO, Igwegbe CA, Ighalo JO, Oba SN (2021) Adsorption of doxycycline from aqueous media: a review. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.116124:p.116124

    Article  Google Scholar 

  52. Elliott J, Ward C (1997) Chemical potential of adsorbed molecules from a quantum statistical formulation. Langmuir 13(5):951–960

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chukwunonso O. Aniagor or A. Hashem.

Ethics declarations

Conflict of interest

The authors declare that there is no known conflict of interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aniagor, C.O., Afifi, M.A. & Hashem, A. Rapid and efficient uptake of aqueous lead pollutant using starch-based superabsorbent hydrogel. Polym. Bull. 79, 6373–6388 (2022). https://doi.org/10.1007/s00289-021-03817-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03817-4

Keywords

Navigation