Skip to main content
Log in

Reduction of atmospheric turbulence using optical duplicate system in free-space optical communications

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

To reduce the effect of atmospheric turbulence and stabilize the optical link in free-space optical (FSO) communications, we have proposed to use an optical duplicate system (ODS) as a multi-beam generator. In this paper, a transmitter adopting the ODS is designed and constructed for the experiment. Moreover, the experiment is conducted to transmit multi-beam generated by the ODS between two points on the ground at a distance of about 450 m. In this experiment, it is found that when the number of multi-beam generated by the ODS is increased from one to two, the width of the probability density distribution of the light intensity calculated from the movies captured by the receiver becomes narrower, and the variation of the light intensity becomes smaller. It is experimentally demonstrated that the effect of atmospheric turbulence can be reduced by the ODS. These results indicate that the ODS will make a significant contribution to the stabilization of optical link in FSO communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Toyoshima, M.: Trends in satellite communications and the role of optical free-space communications [invited]. J. Opt. Netw. 4, 300–311 (2005). https://doi.org/10.1364/JON.4.000300

    Article  Google Scholar 

  2. Majumdar, A.K.: Free-space optical (FSO) platforms: unmanned aerial vehicle (UAV) and mobile. In: Majumdar, A.K. (ed.) Advanced Free Space Optics (FSO) A Systems Approach, pp. 203–225. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0918-6_6

  3. Kaushal, H., Jain, V.K., Kar, S.: Overview of wireless optical communication systems. In: Kaushal, H., Jain, V.K., Kar, S. (eds.) Free Space Optical Communication, pp. 1–39. Springer, New Delhi (2017). https://doi.org/10.1007/978-81-322-3691-7_1

  4. Kaymak, Y., Rojas-Cessa, R., Feng, J., Ansari, N., Zhou, M., Zhang, T.: A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications. IEEE Commun. Surv. Tutor. 20, 1104–1123 (2018). https://doi.org/10.1109/COMST.2018.2804323

  5. Son, I.K., Mao, S.: A survey of free space optical networks. Digit. Commun. Netw. 3, 67–77 (2017). https://doi.org/10.1016/j.dcan.2016.11.002

    Article  Google Scholar 

  6. Nakayama, T., Takayama, Y., Fujikawa, C., Watanabe, E., Kodate, K.: Compact optical duplicate system for satellite-ground laser communications: application of averaging effects. Opt. Rev. 21, 659–667 (2014). https://doi.org/10.1007/s10043-014-0106-x

    Article  Google Scholar 

  7. Nakayama, T., Takayama, Y., Fujikawa, C., Kodate, K.: Controlling laser beam irradiation area using an optical duplicate system to improve satellite–ground laser communications. Jpn. J. Appl. Phys. 55, 08RB05-1-08RB05-5 (2016). https://doi.org/10.7567/JJAP.55.08RB05

    Article  Google Scholar 

  8. Tyson, R.: Principles of adaptive optics. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  9. Kaushal, H., Jain, V.K., Kar, S.: Free-space optical channel models. In: Kaushal, H., Jain, V.K., Kar, S. (eds.) Free Space Optical Communication, pp. 41–89. Springer, New Delhi (2017). https://doi.org/10.1007/978-81-322-3691-7_2

  10. Kim, I.I., Hakakha, H., Adhikari, P., Korevaar, E.J., Majumdar, A.K.: Scintillation reduction using multiple transmitters. Proc. SPIE 2990, 102–113 (1997). https://doi.org/10.1117/12.273685

    Article  ADS  Google Scholar 

  11. Mata-Calvo, R., Calia, D.B., Barrios, R., Centrone, M., Giggenbach, D., Lombardi, G., Becker, P., Zayer, I.: Laser guide stars for optical free-space communications. Proc. SPIE 10096, 100960R-1-100960R–12 (2017). https://doi.org/10.1117/12.2256666

    Article  Google Scholar 

  12. Tyson, R.K.: Adaptive optics and ground-to-space laser communications. Appl. Opt. 35, 3640 (1996). https://doi.org/10.1364/ao.35.003640

    Article  ADS  Google Scholar 

  13. Toyoshima, M., Araki, K.: The optical branching method. Japanese Patent No. 3069703, 24 July 2000

  14. Boroson, D.M.: Overview and status of the lunar laser communication demonstration. In: Proceedings of International Conference on Space Optical Systems and Applications, pp. 1–3 (2012). https://doi.org/10.1117/12.2011483

  15. Hamanaka, K., Nemoto, H., Oikawa, M., Okuda, E., Kishimoto, T.: Multiple imaging and multiple Fourier transformation using planar microlens arrays. Appl. Opt. 29, 4064 (1990). https://doi.org/10.1364/ao.29.004064

    Article  ADS  Google Scholar 

  16. Hamanaka, K., Kishimoto, T.: Multiple imaging and multiple Fourier transformation using microlens arrays. Jpn. J. Appl. Phys. 29, L1277–L1280 (1990). https://doi.org/10.1143/JJAP.29.L1277

    Article  ADS  Google Scholar 

  17. Hayasaki, Y., Tohyama, I., Yatagai, T., Mori, M., Ishihara, S.: Optical learning neural network using Selfoc microlens array. Jpn. J. Appl. Phys. 31, 1689–1693 (1992). https://doi.org/10.1143/JJAP.31.1689

    Article  ADS  Google Scholar 

  18. Anguita, J.A., Cisternas, J.E.: Experimental evaluation of transmitter and receiver diversity in a terrestrial FSO link. In: Proceedings of IEEE Globecom 2010 Workshops, pp. 1005–1009 (2010). https://doi.org/10.1109/GLOCOMW.2010.5700085

  19. Nakayama, T., Takayama, Y., Fujikawa, C., Kodate, K.: Medium-range propagation experiment using optical duplicate system. In: Technical Digest 22nd Microoptics Conference, pp. 338–339 (2017). https://doi.org/10.23919/MOC.2017.8244624

  20. Perlot, N., Fritzsche, D.: Aperture averaging: theory and measurements. Proc. SPIE 5338, 233–242 (2004). https://doi.org/10.1117/12.528901

    Article  ADS  Google Scholar 

  21. Nakayama, T., Takayama, Y., Fujikawa, C., Kodate, K.: Stabilization of optical link at medium and short range free-space optical communications. In: Technical Digest 23rd Microoptics Conference, p 11 (2018)

Download references

Acknowledgements

A part of this research was carried out in response to the grant (28–139) of the research assistance project of the JKA foundation. We deeply appreciate the support given by everyone concerned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Nakayama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, T., Takayama, Y., Fujikawa, C. et al. Reduction of atmospheric turbulence using optical duplicate system in free-space optical communications. Opt Rev 28, 434–439 (2021). https://doi.org/10.1007/s10043-021-00677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00677-1

Keywords

Navigation