Skip to main content
Log in

Effect of pre-germination treatment with direct magnetic field exposure: a systematic review and meta-analysis

  • Review Article
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The search for ecological technologies that favour germination processes in agricultural and forestry seeds is a topic of interest as an environmentally friendly option. This study was a systematic review and meta-analysis to examine whether magnetic field direct exposure of seeds has a specific effect on germination. Using Scopus (2000–2020) and Web of Science (2000–2020) databases, a bibliographic search was carried out using the following expressions (pre-sowing AND seed AND magnetic) to filter the references in the title, abstract and keywords of the articles published. The calculation and declaration of the effect size was performed by comparing binary results through applying the Odds-Ratio register with a 95% confidence interval (CI). The random effects model was applied with the DerSimonian and Laird method. A total of 175 articles were found, of which only 26 were accepted for systematic review and meta-analysis. Three subgroups were established according to the magnetic field strengths. The subgroup corresponding to intensities between 1 and 50 mT presented an Odds-Ratio of 0.49 with a CI of (0.19, 0.79), Q (14) = 24.77, p = 0.04, indicating that the treatment had a significant effect. The remaining subgroups showed no significant effect. Likewise, the global meta-analysis revealed a significant effect in favour of the treatment, with an Odds-Ratio of 0.68, a CI of (0.41, 0.94), Q (28) = 44.03, p = 0.03. From the studies included in the meta-analysis, the results show a significant effect of seed direct exposure to magnetic fields that can be used to increase seed germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzal I, Abbasi KY, Iqbal A, et al (2016) Enhancement of zinnia seed germination and seedling emergence through magnetic seed stimulation. Acta Sci Pol Hortorum Cultus 15:173–184

    Google Scholar 

  • Ahmad M, Galland P, Ritz T et al (2007) Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–624. https://doi.org/10.1007/s00425-006-0383-0

    Article  CAS  PubMed  Google Scholar 

  • Airi S, Bhatt ID, Bhatt A et al (2009) Variations in seed germination of Hippophae salicifolia with different presoaking treatments. J for Res 20:27–30

    Article  CAS  Google Scholar 

  • Al Zoubi OM (2020) Effect of mechanical and chemical scarifications of date palm seeds (Phoenix dactylifera L.) on in vitro germination. Bulg J Agric Sci 26:105–113

    Google Scholar 

  • Almaghrabi OA, Elbeshehy EKF (2012) Effect of weak electro magnetic field on grain germination and seedling growth of different wheat (Triticum aestivum L.) cultivars. Life Sci J 9:1615–1622

    Google Scholar 

  • Alpsoy HC, Unal H (2019) Effect of stationary magnetic field on seed germination and crop yield in spinach (Spinacia oleracea L.). Comptes Rendus L’Academie Bulg des Sci 72:687–696. https://doi.org/10.7546/CRABS.2019.05.18

    Article  Google Scholar 

  • Anand A, Nagarajan S, Verma APS et al (2012) Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian J Biochem Biophys 49:63–70

    CAS  PubMed  Google Scholar 

  • Antonova-Karacheva GM (2020) Effect of pre-sowing electromagnetic processing on the sowing and morphological characters of bulgarian pepper varieties (Capsicum annuum). Indian J Agric Res 54:121–128

    Google Scholar 

  • Asghar T, Iqbal M, Jamil Y et al (2017) Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield. J Photochem Photobiol B Biol 166:212–219

    Article  CAS  Google Scholar 

  • Azad MS, Zedan-Al-Musa M, Matin MA (2010) Effects of pre-sowing treatments on seed germination of Melia azedarach. J for Res 21:193–196

    Article  Google Scholar 

  • Azad S, Manik MR, Hasan S, Matin A (2011) Effect of different pre-sowing treatments on seed germination percentage and growth performance of Acacia auriculiformis. J for Res 22:183

    Article  CAS  Google Scholar 

  • Balakhnina T, Bulak P, Nosalewicz M et al (2015) The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiol Plant. https://doi.org/10.1007/s11738-015-1802-2

    Article  Google Scholar 

  • Bhardwaj J, Anand A, Nagarajan S (2012) Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiol Biochem 57:67–73. https://doi.org/10.1016/j.plaphy.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  • Bian L, Yang L, Wang J, Shen H (2013) Effects of KNO3 pretreatment and temperature on seed germination of Sorbus pohuashanensis. J for Res 24:309–316

    Article  CAS  Google Scholar 

  • Cakmak T, Dumlupinar R, Erdal S (2010) Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagn J Bioelectromagn Soc Soc Phys Regul Biol Med Eur Bioelectromagn Assoc 31:120–129

    Google Scholar 

  • Carruggio F, Onofri A, Impelluso C et al (2020) Seed dormancy breaking and germination in Bituminaria basaltica and B. bituminosa (Fabaceae). Plants 9:1110

    Article  CAS  PubMed Central  Google Scholar 

  • Cho JS, Jang BK, Lee CH (2020) Breaking combinational dormancy of Rhus javanica L. seeds in South Korea: effect of mechanical scarification and cold-moist stratification. South Afr J Bot 133:174–177

    Article  CAS  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  PubMed  Google Scholar 

  • Dashti F, Ghahremani-Majd H, Esna-Ashari M (2012) Overcoming seed dormancy of mooseer (Allium hirtifolium) through cold stratification, gibberellic acid, and acid scarification. J for Res 23:707–710

    Article  CAS  Google Scholar 

  • de Araújo SS, Paparella S, Dondi D et al (2016) Physical methods for seed invigoration: advantages and challenges in seed technology. Front Plant Sci 7:1–12. https://doi.org/10.3389/fpls.2016.00646

    Article  Google Scholar 

  • De Souza A, Garcí D, Sueiro L et al (2006) Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics 27:247–257. https://doi.org/10.1002/bem.20206

    Article  PubMed  Google Scholar 

  • De Souza A, Sueiro L, García D, Porras E (2010) Extremely low frequency non-uniform magnetic fields improve tomato seed germination and early seedling growth. Seed Sci Technol 38:61–72. https://doi.org/10.15258/sst.2010.38.1.06

    Article  Google Scholar 

  • De Souza A, García D, Sueiro L, Gilart F (2014) Improvement of the seed germination, growth and yield of onion plants by extremely low frequency non-uniform magnetic fields. Sci Hortic (amsterdam) 176:63–69

    Article  Google Scholar 

  • Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463. https://doi.org/10.1111/j.0006-341X.2000.00455.x

    Article  CAS  PubMed  Google Scholar 

  • Dziwulska-Hunek A, Kornarzyński K, Matwijczuk A et al (2009) Effect of laser and variable magnetic field simulation on amaranth seeds germination. Int Agrophysics 23:229–235

    Google Scholar 

  • Dziwulska-Hunek A, Sujak A, Kornarzyński K (2013) Short-term exposure to Pre-sowing electromagnetic radiation of amaranth seeds affects germination energy but not photosynthetic pigment content. Polish J Environ Stud 22:93–98

    CAS  Google Scholar 

  • Dziwulska-Hunek A, Szymanek M, Stadnik J (2020) Impact of pre-sowing red light treatment of sweet corn seeds on the quality and quantity of yield. Agriculture 10:165

    Article  CAS  Google Scholar 

  • Erfanzadeh R, Daneshgar M, Ghelichnia H (2020) Improvement of the seedling emergence method in soil seed bank studies using chemical treatments. Community Ecol 21:183–190

    Article  Google Scholar 

  • Eşitken A, Turan M (2004) Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. camarosa ). Acta Agric Scand Sect B Soil Plant Sci 54:135–139. https://doi.org/10.1080/09064710310019748

    Article  Google Scholar 

  • Govindaraj M, Masilamani P, Albert VA, Bhaskaran M (2017) Effect of physical seed treatment on yield and quality of crops: a review. Agric Rev 38:1–14

    Google Scholar 

  • Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Br Med J 327:557–560

    Article  Google Scholar 

  • Hołubowicz R, Kubisz L, Gauza M et al (2014) Effect of low frequency magnetic field (LFMF) on the germination of seeds and selected useful characters of onion (Allium cepa L.). Not Bot Horti Agrobot Cluj-Napoca 42:168–172. https://doi.org/10.15835/nbha4219131

    Article  Google Scholar 

  • Iqbal M, Muhammad D et al (2012) Effect of pre-sowing magnetic field treatment to garden pea (Pisum sativum L.) seed on germination and seedling growth. Pakistan J Bot 44:1851–1856

    Google Scholar 

  • Iqbal M, Ul Haq Z, Jamil Y, Nisar J (2016a) Pre-sowing seed magnetic field treatment influence on germination, seedling growth and enzymatic activities of melon (Cucumis melo L.). Biocatal Agric Biotechnol 6:176–183

    Article  Google Scholar 

  • Iqbal M, Ul Haq Z, Malik A et al (2016b) Pre-sowing seed magnetic field stimulation: a good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatal Agric Biotechnol 5:30–37. https://doi.org/10.1016/j.bcab.2015.12.002

    Article  Google Scholar 

  • Isaac AE, Hernández AC, Domínguez A, Cruz OA (2011) Effect of pre-sowing electromagnetic treatment on seed germination and seedling growth in maize (Zea mays L.). Agron Colomb 29:405–411

    Google Scholar 

  • Jak S (2015) Meta-analytic structural equation modelling. Springer, New York

    Book  Google Scholar 

  • Javed N, Ashraf M, Akram NA, Al-Qurainy F (2011) Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. Photochem Photobiol 87:1354–1362. https://doi.org/10.1111/j.1751-1097.2011.00990.x

    Article  CAS  PubMed  Google Scholar 

  • Kahramanogullari CT, Beyaz R, Alizadeh B, Yildiz M (2012) The effect of magnetic field on in vitro seed germination, seedling growth and shoot regeneration from cotyledon node explants of Lathyrus chrysanthus Boiss. N Biotechnol 29:S138

    Article  Google Scholar 

  • Kataria S, Baghel L, Guruprasad KN (2017) Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal Agric Biotechnol 10:83–90. https://doi.org/10.1016/j.bcab.2017.02.010

    Article  Google Scholar 

  • Leandro G (2008) Meta-analysis in medical research: the handbook for the understanding and practice of meta-analysis. Wiley, Hoboken

    Google Scholar 

  • Maffei ME (2014) Magnetic field effects on plant growth, development, and evolution. Front Plant Sci 5:445

    Article  PubMed  PubMed Central  Google Scholar 

  • Manterola C, Astudillo P, Arias E, Claros N (2011) Artículo especial Revisiones sistemá ticas de la literatura. Qué Se Debe Saber Acerca De Ellas. https://doi.org/10.1016/j.ciresp.2011.07.009

    Article  Google Scholar 

  • Matuoka MA, Benchimol M, de Almeida-Rocha JM, Morante-Filho JC (2020) Effects of anthropogenic disturbances on bird functional diversity: a global meta-analysis. Ecol Indic 116:106471. https://doi.org/10.1016/j.ecolind.2020.106471

    Article  Google Scholar 

  • Molinero LM (2008) Metaanálisis, una guía rápida para lectores y usuarios. Hipertension 25:108–120. https://doi.org/10.1016/S0212-8241(08)70882-X

    Article  Google Scholar 

  • Muszyński S, Gagoś M, Pietruszewski S (2009) Short-term pre-Germination exposure to ELF magnetic field does not influence seedling growth in durum wheat (Triticum durum). Polish J Environ Stud 18:1065–1072

    Google Scholar 

  • Muszyński S, Gagoś M, Pietruszewski S (2009) Short-term pre-Germination exposure to ELF magnetic field does not influence seedling growth in durum wheat (Triticum durum). Polish J Environ Stud 18:1065–1072

    Google Scholar 

  • Nurbaity A, Nuraini A, Agustine E et al (2019) Enhanced seedling germination and growth of sorghum through pre-sowing seed magnetic field treatment. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/393/1/012101

    Article  Google Scholar 

  • Pandiselvam R, Mayookha VP, Kothakota A et al (2020) Impact of ozone treatment on seed germination: a systematic review. Ozone Sci Eng 42:331–346

    Article  CAS  Google Scholar 

  • Pauzaite G, Malakauskiene A, Nauciene Z et al (2018) Changes in Norway spruce germination and growth induced by pre-sowing seed treatment with cold plasma and electromagnetic field: Short-term versus long-term effects. Plasma Process Polym. https://doi.org/10.1002/ppap.201700068

    Article  Google Scholar 

  • Perveen R, Ali Q, Ashraf M et al (2010) Effects of different doses of low power continuous wave He–Ne laser radiation on some seed thermodynamic and germination parameters, and potential enzymes involved in seed germination of sunflower (Helianthus annuus L.). Photochem Photobiol 86:1050–1055

    Article  CAS  PubMed  Google Scholar 

  • Pietruszewski S, Kania K (2010) Effect of magnetic field on germination and yield of wheat. Int Agrophysics 24:297–302

    Google Scholar 

  • Pietruszewski S, Martínez E (2015) Magnetic field as a method of improving the quality of sowing material: a review. Int Agrophysics 29:377–389. https://doi.org/10.1515/intag-2015-0044

    Article  CAS  Google Scholar 

  • Radhakrishnan R (2019) Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol Mol Biol Plants 25:1107–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy KV, Reshma SR, Jareena S, Nagaraju M (2012) Exposure of greengram seeds (Vigna radiate var. radiata) to static magnetic fields: effects on germination and α-amylase activity. Res J Seed Sci 5:106–114

    Article  Google Scholar 

  • Rusdy M (2017) A review on hardseedness and breaking dormancy in tropical forage legumes. Livest Res Rural Dev 29:237

    Google Scholar 

  • Sadowska U, Zabinski A, Tabor S (2018) Influence of variable electromagnetic field on the energy and germination capacity of Cannabis sativa L. subsp. culta Serebr. 2018. Appl Electromagn Mod Tech Med PTZE 2018:252–255. https://doi.org/10.1109/PTZE.2018.8503152

    Article  Google Scholar 

  • Shine MB, Guruprasad KN, Anand A (2011) Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics 32:474–484. https://doi.org/10.1002/bem.20656

    Article  CAS  PubMed  Google Scholar 

  • Soliman AS, Harith MA (2010) Effects of laser biostimulation on germination of Acacia farnesiana (L.) Willd. Acta Hortic 854:41–50. https://doi.org/10.17660/ActaHortic.2010.854.4

    Article  CAS  Google Scholar 

  • Song F (1999) Exploring heterogeneity in meta-analysis: Is the L’Abbe plot useful? J Clin Epidemiol 52:725–730. https://doi.org/10.1016/S0895-4356(99)00066-9

    Article  CAS  PubMed  Google Scholar 

  • Stange BC, Rowland RE, Rapley BI, Podd JV (2002) ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagn J Bioelectromagn Soc Soc Phys Regul Biol Med Eur Bioelectromagn Assoc 23:347–354

    CAS  Google Scholar 

  • Sujak A, Dziwulska-Hunek A, Reszczynska E (2013a) Effect of electromagnetic stimulation on selected fabaceae plants. Polish J Environ Stud 22:893–898

    Google Scholar 

  • Sujak A, Dziwulska-Hunek A, Reszczyńska E (2013b) Effect of electromagnetic stimulation on selected Fabaceae plants. Polish J Environ Stud 22:893–898

    Google Scholar 

  • Szajsner H, Prośba-Białczyk U, Sacała E, et al (2017) The effect of pre-sowing seed stimulation on the germination and pigment content in sugar beet (Beta vulgaris L.) seedlings leaves. Polish J Nat Sci 32:207–222

    Google Scholar 

  • Teixeira da Silva JA, Dobránszki J (2016) Magnetic fields: how is plant growth and development impacted? Protoplasma 253:231–248. https://doi.org/10.1007/s00709-015-0820-7

    Article  CAS  Google Scholar 

  • Urrútia G, Bonfill X (2010) Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med Clin (barc) 135:507–511

    Article  Google Scholar 

  • Valle D (2015) Conceptos fundamentales de las revisiones sistemáticas/metaanálisis Herney Andrés García-Perdomo. Urol Colomb 24:28–34. https://doi.org/10.1016/j.uroco.2015.03.005

    Article  Google Scholar 

  • Vashisth A, Joshi DK (2017) Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics 38:151–157. https://doi.org/10.1002/bem.22023

    Article  CAS  PubMed  Google Scholar 

  • Vashisth A, Nagarajan S (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol 167:149–156

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Li Y, Yang Y, Li C (2005) Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. Environ Exp Bot 54:286–294. https://doi.org/10.1016/j.envexpbot.2004.09.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Ureta-Leones.

Additional information

Communicated by Oliver Gailing.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ureta-Leones, D., García-Quintana, Y., Vega-Rosete, S. et al. Effect of pre-germination treatment with direct magnetic field exposure: a systematic review and meta-analysis. Eur J Forest Res 140, 1029–1038 (2021). https://doi.org/10.1007/s10342-021-01400-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-021-01400-0

Keywords

Navigation