Skip to main content

Advertisement

Log in

Application of Modified Adaptive Morphogenesis and Robust Optimization Algorithms for thin stiffened plates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Stiffened plates are widely used in high-performance structures, especially when a high stiffness/weight ratio is a relevant factor. In this work, the main objective relies on determining the optimum geometry of a simply supported stiffened thin plate which minimizes the maximum out-of-plane displacement, while complying with maximum von Mises stress constraints. The structure is subject to a pressure uniform load and has a constraint of constant total material volume. This work investigated the influence in the objective function of variations in several geometric parameters, such as volume, number, angle, position, and cross-sectional area of the stiffeners in the maximum displacement and the maximum von Mises stress. A new topology optimization algorithm denominated Modified Adaptive Morphogenesis Algorithm was proposed using a pattern of leaf vein formation to define the topology of the stiffeners in the plates. A Hybrid Genetic Algorithm was performed to initiate the optimization procedure called germination. Also, a Robust Optimization Algorithm has used multiple objectives to decrease the variability of the maximum displacement field. The results showed that near the Pareto Front, the maximum displacement is not very sensitive to changes in the project decision variables, thus being a robust optimum point. Moreover, the results obtained were compared with data available in the literature, which showed the relevance and validation of the proposed methodology. Finally, under equivalent conditions of the number of stiffeners, the Morphogenesis Algorithm showed better results (displacement or stress) than those obtained with perpendicular stiffeners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

(*) Original titles in Portuguese (Master’s Thesis): [63] Modelagem computacional e método Design Construtal aplicados à otimização geométrica de placas finas de aço com enrijecedores submetidas a carregamento transversal uniforme. [64] Simulação numérica e método Design Construtal aplicados à análise geométrica de placas retangulares enrijecidas submetidas a carregamento transversal uniforme. [65] Simulação numérica e Design Constructal aplicados a placas com enrijecedores longitudinais e transversais com diferentes relações altura/espessura.

  1. Szilard R (2004) Theories and applications of plate analysis: classical, numerical and engineering methods, 1st edn. Wiley, New Jersey

    Book  Google Scholar 

  2. Chakraborty S, Mukhopadhyay M, Sha OP (2002) Determination of physical parameters of stiffened plates using genetic algorithm. J Comput Civ Eng 16:206–221. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(206)

    Article  Google Scholar 

  3. Li B, Ge L, Hong J (2017) An intelligent computational approach for design optimization of stiffened engineering structures. Int J Precis Eng Manuf 18:1005–1012. https://doi.org/10.1007/s12541-017-0118-0

    Article  Google Scholar 

  4. Bedair O (2009) Analysis and limit state design of stiffened plates and shells: a world view. Appl Mech Rev 62:1–16. https://doi.org/10.1115/1.3077137

    Article  Google Scholar 

  5. Li B, Hong J, Wang Z, Liu Z (2013) An innovative layout design methodology for stiffened plate/shell structures by material increasing criterion. J Eng Mater Technol Trans ASME 135:1–11. https://doi.org/10.1115/1.4023781

    Article  Google Scholar 

  6. Yang X (2014) Nature-Inspired Optimization Algorithms, 1st edn. Elsevier, London

    MATH  Google Scholar 

  7. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, Oxford

    MATH  Google Scholar 

  8. Dorigo M (1992) Optimization, learning and natural algorithms. Politecnico di Milano, Milano

    Google Scholar 

  9. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, vol. 4. pp 1942–1948

  10. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, Turkey

  11. Yang X-S (2009) Firefly Algorithms for Multimodal Optimization BT—Stochastic Algorithms: foundations and applications. In: Watanabe O, Zeugmann T (eds). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 169–178

  12. Yang X-S (2010) A new metaheuristic Bat-inspired Algorithm. Stud Comput Intell 284:65–74. https://doi.org/10.1007/978-3-642-12538-6_6

    Article  MATH  Google Scholar 

  13. Yang X-S (2012) Flower pollination algorithm for global optimization. Unconv Comput Nat Comput 7445:240–249. https://doi.org/10.1007/978-3-642-32894-7_27

    Article  MATH  Google Scholar 

  14. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  15. Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  16. Gomes GF, da Cunha SS, Ancelotti AC (2019) A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Eng Comput 35:619–626. https://doi.org/10.1007/s00366-018-0620-8

    Article  Google Scholar 

  17. Pereira JLJ, Francisco MB, Diniz CA et al (2021) Lichtenberg algorithm: a novel hybrid physics-based meta-heuristic for global optimization. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114522

    Article  Google Scholar 

  18. Kallassy A, Marcelin JL (1997) Optimization of stiffened plates by genetic search. Struct Optim 13:134–141. https://doi.org/10.1007/BF01199232

    Article  Google Scholar 

  19. Marcelin JL (2001) Genetic optimization of stiffened plates and shells. Int J Numer Methods Eng 51:1079–1088. https://doi.org/10.1002/nme.193

    Article  MATH  Google Scholar 

  20. Kang J, Kim C (2005) Minimum-weight design of compressively loaded composite plates and stiffened panels for postbuckling strength by Genetic Algorithm. Compos Struct 69:239–246. https://doi.org/10.1016/j.compstruct.2004.07.001

    Article  Google Scholar 

  21. Xing DH, Chen WY, Zhao L, Ma JF (2012) Structural bionic design for high-speed machine tool working table based on distribution rules of leaf veins. Sci China Technol Sci 55:2091–2098. https://doi.org/10.1007/s11431-012-4805-x

    Article  Google Scholar 

  22. Li B, Hong J, Yan S, Liu Z (2013) Multidiscipline topology optimization of stiffened plate/shell structures inspired by growth mechanisms of leaf veins in nature. Math Probl Eng 2013:1–11. https://doi.org/10.1155/2013/653895

    Article  MathSciNet  Google Scholar 

  23. Liu H, Li B, Yang Z, Hong J (2017) Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm. J Manuf Syst 43:375–384. https://doi.org/10.1016/j.jmsy.2017.02.002

    Article  Google Scholar 

  24. Li B, Liu H, Yang Z, Zhang J (2019) Stiffness design of plate/shell structures by evolutionary topology optimization. Thin-Walled Struct 141:232–250. https://doi.org/10.1016/j.tws.2019.04.012

    Article  Google Scholar 

  25. Li B, Xuan C, Tang W et al (2019) Topology optimization of plate/shell structures with respect to eigenfrequencies using a biologically inspired algorithm. Eng Optim 51:1829–1844. https://doi.org/10.1080/0305215X.2018.1552952

    Article  MathSciNet  Google Scholar 

  26. Sapountzakis EJ, Dikaros IC (2012) Large deflection analysis of plates stiffened by parallel beams. Eng Struct 35:254–271. https://doi.org/10.1016/j.engstruct.2011.11.008

    Article  Google Scholar 

  27. Singh A, Yang F, Sedaghati R (2018) Design optimization of stiffened panels using finite element integrated force method. Eng Struct 159:99–109. https://doi.org/10.1016/j.engstruct.2017.12.040

    Article  Google Scholar 

  28. Lima JPS, Cunha ML, dos Santos ED et al (2020) Constructal Design for the ultimate buckling stress improvement of stiffened plates submitted to uniaxial compressive load. Eng Struct 203:109883. https://doi.org/10.1016/j.engstruct.2019.109883

    Article  Google Scholar 

  29. Wu H, Liew A, Van Mele T, Block P (2020) Analysis and optimisation of a rib-stiffened vaulted floor for dynamic performance. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.110577

    Article  Google Scholar 

  30. Silva HM, Wojewoda J (2020) Determination of the product of inertia of stiffened plates based on Finite Element Method results. Eng Struct 207:110201. https://doi.org/10.1016/j.engstruct.2020.110201

    Article  Google Scholar 

  31. Mensinger M, Ndogmo J, Parra R (2011) Optimization of stiffened plates for steel bridges based on Eurocode 3 Part 1–5 using genetic algorithms. Steel Constr 4:29–33. https://doi.org/10.1002/stco.201110005

    Article  Google Scholar 

  32. Vu Q, Truong V, Papazafeiropoulos G et al (2019) Bend-buckling strength of steel plates with multiple longitudinal stiffeners. J Constr Steel Res 158:41–52. https://doi.org/10.1016/j.jcsr.2019.03.006

    Article  Google Scholar 

  33. Putra GL, Kitamura M, Takezawa A (2019) Structural optimization of stiffener layout for stiffened plate using hybrid GA. Int J Nav Archit Ocean Eng 11:809–818. https://doi.org/10.1016/j.ijnaoe.2019.03.005

    Article  Google Scholar 

  34. Vashishth V (2016) Experimental investigation of the aircraft stiffened panel structure under pressure loads. Int J Innov Eng Technol 7:462–472

  35. Wang B, Tian K, Hao P et al (2015) Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method. Compos Struct 132:136–147. https://doi.org/10.1016/j.compstruct.2015.05.012

    Article  Google Scholar 

  36. Nakazawa Y, Kogiso N, Yamada T, Nishiwaki S (2016) Robust topology optimization of thin plate structure under concentrated load with uncertain load position. J Adv Mech Des Syst Manuf 10:1–12. https://doi.org/10.1299/JAMDSM.2016JAMDSM0057

    Article  Google Scholar 

  37. Bacarreza O, Aliabadi MH, Apicella A (2015) Robust design and optimization of composite stiffened panels in post-buckling. Struct Multidiscip Optim 51:409–422. https://doi.org/10.1007/s00158-014-1136-5

    Article  Google Scholar 

  38. Messac A, Ismail-Yahaya A (2002) Multiobjective robust design using physical programming. Struct Multidiscip Optim 23:357–371. https://doi.org/10.1007/s00158-002-0196-0

    Article  Google Scholar 

  39. Hadidi A (2015) A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl Energy 150:196–210. https://doi.org/10.1016/j.apenergy.2015.04.024

    Article  Google Scholar 

  40. Katariya PV, Hirwani CK, Panda SK (2019) Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory. Eng Comput 35:467–485. https://doi.org/10.1007/s00366-018-0609-3

    Article  Google Scholar 

  41. Kharwar PK, Verma RK (2020) Exploration of nature inspired Grey wolf algorithm and Grey theory in machining of multiwall carbon nanotube/polymer nanocomposites. Eng Comput. https://doi.org/10.1007/s00366-020-01103-x

    Article  Google Scholar 

  42. Li W, Gao L, Garg A, Xiao M (2020) Multidisciplinary robust design optimization considering parameter and metamodeling uncertainties. Eng Comput. https://doi.org/10.1007/s00366-020-01046-3

    Article  Google Scholar 

  43. Walker M, Hamilton R (2006) A technique for optimally designing fibre-reinforced laminated plates under in-plane loads for minimum weight with manufacturing uncertainties accounted for. Eng Comput 21:282–288. https://doi.org/10.1007/s00366-006-0017-y

    Article  Google Scholar 

  44. Gen M, Cheng R, Lin L (2008) Network Models and Optmization Multiobjective Genetic Algorithm approach. Springer, Berlin

    MATH  Google Scholar 

  45. Dao SD, Abhary K, Marian R (2017) An innovative framework for designing genetic algorithm structures. Expert Syst Appl 90:196–208. https://doi.org/10.1016/j.eswa.2017.08.018

    Article  Google Scholar 

  46. Coley DA (1999) An introduction to genetic algorithms for scientists and engineers, 1st edn. World Scientific, Singapore

    Book  Google Scholar 

  47. Gen M, Cheng R (2000) Genetic algorithms and engineering optimization, 2nd edn. Wiley, Canada

    Google Scholar 

  48. Eiben AE, Smith J (2004) Introduction to evolutionary computing, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  49. de Queiroz JPTP, Cunha ML, Pavlovic A et al (2019) Geometric evaluation of stiffened steel plates subjected to transverse loading for naval and offshore applications. J Mar Sci Eng 7:1–12. https://doi.org/10.3390/jmse7010007

    Article  Google Scholar 

  50. Troina G, Cunha M, Pinto V et al (2020) Computational modeling and constructal design theory applied to the geometric optimization of thin steel plates with stiffeners subjected to uniform transverse load. Metals (Basel). https://doi.org/10.3390/met10020220

    Article  Google Scholar 

  51. Pinto VT, Rocha LAO, Fragassa C et al (2020) Multiobjective geometric analysis of stiffened plates under bending through constructal design method. J Appl Comput Mech 6:1438–1449. https://doi.org/10.22055/jacm.2020.35248.2608

    Article  Google Scholar 

  52. Bohn S, Andreotti B, Douady S et al (2002) Constitutive property of the local organization of leaf venation networks. Phys Rev E Stat Nonlin Soft Matter Phys 65:61914. https://doi.org/10.1103/PhysRevE.65.061914

    Article  Google Scholar 

  53. Ji J, Ding X, Xiong M (2014) Optimal stiffener layout of plate/shell structures by bionic growth method. Comput Struct 135:88–99. https://doi.org/10.1016/j.compstruc.2014.01.022

    Article  Google Scholar 

  54. Zhang H, Ding X, Dong X, Xiong M (2018) Optimal topology design of internal stiffeners for machine pedestal structures using biological branching phenomena. Struct Multidiscip Optim 57:2323–2338. https://doi.org/10.1007/s00158-017-1862-6

    Article  Google Scholar 

  55. Li B, Hong J, Liu Z (2014) Stiffness design of machine tool structures by a biologically inspired topology optimization method. Int J Mach Tools Manuf 84:33–44. https://doi.org/10.1016/j.ijmachtools.2014.03.005

    Article  Google Scholar 

  56. Deb K (2001) Multi-Objective Optimization using evolutionary algorithms, 1st edn. Wiley, Hoboken

    MATH  Google Scholar 

  57. Deb K, Gupta H (2006) Introducing robustness in Multi-Objective Optimization. Evol Comput 14:463–494

    Article  Google Scholar 

  58. ANSYS Inc (2007) Elements reference ANSYS release 11.0. ANSYS Inc, Canonsburg

    Google Scholar 

  59. Richardson LF (1911) IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos Trans R Soc Lond Ser A 210:307–357. https://doi.org/10.1098/rsta.1911.0009

    Article  MATH  Google Scholar 

  60. Marchi CH, Silva AFC (2002) Unidimensional numerical solution error estimation for convergent apparent order. Numer Heat Transf Part B Fundam 42:167–188. https://doi.org/10.1080/10407790190053888

    Article  Google Scholar 

  61. Marchi CH, Silva AFC (2005) Multi-dimensional discretization error estimation for convergent apparent order. J Braz Soc Mech Sci Eng 27:432–439. https://doi.org/10.1590/S1678-58782005000400012

    Article  Google Scholar 

  62. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, Singapore

    MATH  Google Scholar 

  63. Troina GS (2017) Computational modeling and constructal design method applied to geometric optimization of thin steel plates with stiffeners submitted to uniform transverse loading (translated from Portuguese). Federal University of Rio Grande. https://sistemas.furg.br/sistemas/sab/arquivos/bdtd/0000012956.pdf (*)

  64. Pinto VT (2019) Numerical simulation and constructal design method applied to geometric analysis of stiffened rectangular plates submitted to uniform transversal loading (translated from Portuguese). Federal University of Rio Grande. https://sistemas.furg.br/sistemas/sab/arquivos/bdtd/0000013173.pdf (*)

  65. Nogueira CM (2019) Numerical simulation and constructal design applied to plates with longitudinal and transverse stiffeners with different height/thickness ratios (translated from Portuguese). Federal University of Rio Grande. https://sistemas.furg.br/sistemas/sab/arquivos/bdtd/0000013206.pdf (*)

Download references

Acknowledgements

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES), Brazilian Council for Scientific and Technological Development (CNPq), and Research Support Foundation of Federal District (FAPDF). The authors are grateful to the Group of Experimental and Computational Mechanics (UnB-FGA/GMEC) for providing computational resources and for making possible the work development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz F. Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, B.F., Anflor, C.T.M. & Jorge, A.B. Application of Modified Adaptive Morphogenesis and Robust Optimization Algorithms for thin stiffened plates. Engineering with Computers 38 (Suppl 4), 3391–3407 (2022). https://doi.org/10.1007/s00366-021-01465-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01465-w

Keywords

Navigation