Skip to main content
Log in

The Representation by Series of Exponential Monomials of Functions from Weight Subspaces on a Line

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work we consider the weight spaces of integrable functions \(L_{p}^{\omega}\) \((p\geq 1)\) and continuous functions \(C^{\omega}\) on the real line. Let \(\Lambda=\{\lambda_{k},n_{k}\}\) be an unbounded increasing sequence of positive numbers \(\lambda_{k}\) and their multiplicities \(n_{k}\), \(\mathcal{E}(\Lambda)=\{t^{n}e^{\lambda_{k}t}\}\) be a system of exponential monomials constructed from the sequence \(\Lambda\). We study the subspaces \(W^{p}(\Lambda,\omega)\) and \(W^{0}(\Lambda,\omega)\), which are the closures of the linear span of the system \(\mathcal{E}(\Lambda)\) in the spaces \(L_{p}^{\omega}\) and \(C^{\omega}\), respectively. Under natural constraints on \(\Lambda\) (the finiteness of the condensation index \(S_{\Lambda}\) and \(n_{k}/\lambda_{k}\leq c\), \(k\geq 1\)) and on the convex weight \(\omega\), conditions are obtained under which each function of these subspaces continues to an entire function and is represented by a series in the system \(\mathcal{E}(\Lambda)\) that converges absolutely and uniformly on compact sets in the plane. In contrast to the previously known results for the specified representation problem, we do not require that the sequence \(\Lambda\) has a density, and we do not impose the separability condition: \(\lambda_{k+1}-\lambda_{k}\geq h\), \(k\geq 1\) (instead, we use the condition of the finiteness of the condensation index).

Sufficient conditions for the incompleteness of the system \(\mathcal{E}(\Lambda)\) in the spaces \(L_{p}^{\omega}\) and \(C^{\omega}\) are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Zikkos, ‘‘The closed span of some exponential system in weighted Banach Spaces on the real line and a moment problem,’’ Anal. Math. 44, 605–630 (2018).

    Article  MathSciNet  Google Scholar 

  2. J. M. Anderson and K. G. Binmore, ‘‘Closure theorems with applications to entire functions with gaps,’’ Trans. Am. Math. Soc. 161, 381–400 (1971).

    Article  MathSciNet  Google Scholar 

  3. G. T. Deng, ‘‘Incompleteness and closure of a linear span of exponential system in a weighted Banach space,’’ J. Approx. Theory 125 (1), 1–9 (2003).

    Article  MathSciNet  Google Scholar 

  4. P. Malliavin, ‘‘Sur quelques procédés d’extrapolation,’’ Acta Math. 93, 179–255 (1955).

    Article  MathSciNet  Google Scholar 

  5. W. H. J. Fuchs, ‘‘On the closure of \(\{e^{-t}t^{a_{n}}\}\),’’ Proc. Cambridge Phil. Soc. 42, 91–105 (1946).

    Article  MathSciNet  Google Scholar 

  6. B. V. Vinnitskii and A. V. Shapovalovskii, ‘‘Completeness of exponentials with weight,’’ Ukr. Math. J. 41, 1464–1469 (1989).

    Article  MathSciNet  Google Scholar 

  7. B. V. Vinnitskii and A. V. Shapovalovskii, ‘‘A remark on the completeness of exponentials with weight in \(L^{2}(\mathbb{R})\),’’ Ukr. Math. J. 52, 1002–1009 (2000).

    Article  MathSciNet  Google Scholar 

  8. E. Zikkos, ‘‘Completeness of an exponential system in weighted Banach spaces and closure of its linear span,’’ J. Approx. Theory 146, 115–148 (2007).

    Article  MathSciNet  Google Scholar 

  9. R. P. Boas, Jr., Entire Functions (Academic, New York, 1954).

    MATH  Google Scholar 

  10. A. S. Krivosheev, ‘‘A fundamental principle for invariant subspaces in convex domains,’’ Izv. Math. 68, 291–353 (2004).

    Article  MathSciNet  Google Scholar 

  11. O. A. Krivosheyeva, ‘‘Singular points of the sum of exponential monomials series on the boundary of convergence domain,’’ SPb. Math. J. 23, 321–350 (2012).

    MATH  Google Scholar 

  12. O. A. Krivosheeva and A. S. Krivosheev, ‘‘Singular points of the sum of a Dirichlet series on the convergence line,’’ Funct. Anal. Appl. 49, 122–134 (2015).

    Article  MathSciNet  Google Scholar 

  13. A. S. Krivosheev and O. A. Krivosheeva, ‘‘A basis in an invariant subspace of analytic functions,’’ Sb. Math. 204, 1745–1796 (2013).

    Article  MathSciNet  Google Scholar 

  14. B. Ya. Levin, Distribution of Zeros of Entire Functions (Gostekhizdat, Moscow, 1956) [in Russian].

    MATH  Google Scholar 

  15. A. F. Leont’ev, Entire Functions. Series of Exponentials (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  16. R. T. Rockafellar, Convex Analysis (Princeton Univ. Press, Princeton, 1970).

    Book  Google Scholar 

  17. O. A. Krivosheyeva, ‘‘The convergence domain for series of exponential monomials,’’ Ufa Math. J. 3 (2), 42–55 (2011).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of the second author supported in part by Young Russian Mathematics award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Krivosheev, O. A. Krivosheeva or A. F. Kuzhaev.

Additional information

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivosheev, A.S., Krivosheeva, O.A. & Kuzhaev, A.F. The Representation by Series of Exponential Monomials of Functions from Weight Subspaces on a Line. Lobachevskii J Math 42, 1183–1200 (2021). https://doi.org/10.1134/S1995080221060159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221060159

Keywords:

Navigation