Skip to main content
Log in

Macrostructural Parameters of Asphaltene Nanoaggregates in Natural Asphaltite and in Its Supercritical Water Conversion Products

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The XRD-based study investigates the macrostructural parameters of asphaltenes isolated from natural sulfur-rich asphaltite and from liquid conversion products of this asphaltite. The conversion was carried out in a supercritical water flow at 400°C and 30 MPa both in the absence and in the presence of aluminum and zinc additives. The XRD data demonstrate a decrease in the stack thickness (Lc) and in the number of aromatic sheets (M) in asphaltenes isolated from the conversion products compared to the initial asphaltite. On the other hand, the aromaticity (far) and the average aromatic sheet diameter (La) increase by a factor of nearly three; a significant rise is also observed in the proportion of stacked carbon atoms (φa). In the presence of metal additives, the differences are more pronounced. This is because the oxidation of zinc and aluminum in supercritical water, accompanied by heat release, increases the local temperature of the reactants and generates active hydrogen that prevents radical fragments from recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

REFERENCES

  1. Fedyaeva, O.N. and Vostrikov, A.A., J. Supercrit. Fluids, 2012, vol. 72, pp. 100–110. https://doi.org/10.1016/j.supflu.2012.08.018

    Article  CAS  Google Scholar 

  2. Fedyaeva, O.N., Antipenko, V.R., Shishkin, A.V., and Vostrikov, A.A., Russ. J. Phys. Chem. B, 2014, vol. 8, pp. 1069–1080. https://doi.org/10.1134/S1990793114080077

    Article  CAS  Google Scholar 

  3. Fedyaeva, O.N., Antipenko, V.R., and Vostrikov, A.A., J. Supercrit. Fluids, 2014, vol. 88, pp. 105–116. https://doi.org/10.1016/j.supflu.2014.01.016

    Article  CAS  Google Scholar 

  4. Antipenko, V.R., Goncharov, I.V., Rokosov, Yu.V., and Borisova, L.S., Russ. J. Phys. Chem. B, 2011, vol. 5, pp. 1195–1208. https://doi.org/10.1134/S1990793111080021

    Article  CAS  Google Scholar 

  5. Antipenko, V.R., Fedyaeva, O.N., Grin’ko, A.A., and Vostrikov, A.A., Petrol. Chem., 2020, vol. 60, no. 6, pp. 668–674. https://doi.org/10.1134/S096554412006002X

    Article  CAS  Google Scholar 

  6. Zhang, N., Zhao, S., Sun, X., Xu, Z., and Xu, C., Energy Fuels, 2010, vol. 24, pp. 3970–3976. https://doi.org/10.1021/ef100272e

    Article  CAS  Google Scholar 

  7. Yen, T.F., Erdman, J.G., and Pollack, S.S., Anal. Chem., 1961, vol. 33, pp. 1587–1594. https://doi.org/10.1021/ac60179a039

    Article  CAS  Google Scholar 

  8. Dickie, J.P. and Yen, T.F., Anal. Chem., 1967, vol. 39, pp. 1847–1852. https://doi.org/10.1021/ac50157a057

    Article  CAS  Google Scholar 

  9. Mullins, O.C., Energy Fuels, 2010, vol. 24, pp. 2179– 2207. https://doi.org/10.1021/ef900975e

    Article  CAS  Google Scholar 

  10. Godun, B.A. and Bodan, A.N., Chem. Technol. Fuels Oils, 1974, vol. 10, pp. 866–868. https://doi.org/10.1007/BF00724020

    Article  Google Scholar 

  11. Schwager, I., Farmanian, P.A., Kwan, J.T., Weinberg, V.A., and Yen, T.F., Anal. Chem., 1983, vol. 55, pp. 42–45. https://doi.org/10.1021/ac00252a014

    Article  CAS  Google Scholar 

  12. Makhonin, G.M. and Petrov, A.A., Chem. Technol. Fuels Oils, 1975, vol. 11, pp. 942–946. https://doi.org/10.1007/BF01167678

    Article  Google Scholar 

  13. Korolev, Yu.M., Lobanova, M.F., and Yurkevich, I.A., Organicheskoe veshchestvo v sovremennykh i iskopaemykh osadkakh (Organic Matter in Modern and Fossil Aediments), Moscow: MGU, 1979.

  14. Sadeghi, M.A., Chilingarian, G.V., and Yen, T.F., Energy Sources, 1986, vol. 8, nos. 2–3, pp. 99–123. https://doi.org/10.1080/00908318608946045

    Article  CAS  Google Scholar 

  15. Zhang, Y., Liu, Ch., and Liang, W., Fuel Sci. Technol. Int., 1989, vol. 7, pp. 919–929. https://doi.org/10.1080/08843758908962274

    Article  CAS  Google Scholar 

  16. Kam’yanov, V.F., Gorbunova, L.V., and Filimonova, T.A., Problemy khimii nefti (Petroleum Chemistry Problems). Novosibirsk: Nauka, 1992.

  17. Korolev, Y.M. and Amerik, Y.B., Petrol. Chem., 1993, vol. 33, no. 4, pp. 338–344.

    Google Scholar 

  18. Christopher, J., Sarpal, A.S., Kapur, G.S., Krishna, A., Tyagi, B.R., Jain, M.C., Jain, S.K., and Bhatnagar, A.K., Fuel, 1996, vol. 75, pp. 999–1008. https://doi.org/10.1016/0016-2361(96)00023-3

    Article  CAS  Google Scholar 

  19. Shirokoff, J.W., Siddiqui, M.N., and Ali, M.F., Energy Fuels, 1997, vol. 11, pp. 561–565. https://doi.org/10.1021/ef960025c

    Article  CAS  Google Scholar 

  20. Siddiqui, M.N., Ali, M.F., and Shirokoff, J., Fuel, 2002, vol. 81, pp. 51–58. https://doi.org/10.1016/S0016-2361(01)00116-8

    Article  CAS  Google Scholar 

  21. Bansal, V., Patel, M.B., and Sarpal, A.S., Petrol. Sci. Technol., 2004, vol. 22, pp. 1401–1426. https://doi.org/10.1081/LFT-200027776

    Article  CAS  Google Scholar 

  22. Bouhadda, Y., Bormann, D., Sheu, E., Bendedouch, D., Krallafa, A., and Daaou, M., Fuel, 2007, vol. 86, pp. 1855–1864. https://doi.org/10.1016/j.fuel.2006.12.006

    Article  CAS  Google Scholar 

  23. Borisova, L.S., Geol. Nefti Gaz., 2009, no. 1, pp. 74–78.

    Google Scholar 

  24. Akinnifesi, J.O., Adebiyi, F.M., and Olafisan, K.F., Petrol. Sci. Technol., 2017, vol. 35, pp. 1667–1672. https://doi.org/10.1080/10916466.2017.1356849

    Article  CAS  Google Scholar 

  25. Díaz-Sánchez, H., Rojas-Trigos, J.B., Leyva, C., and Trejo-Zárraga, F., Petrol. Sci. Technol., 2017, vol. 35, pp. 1415–1420. https://doi.org/10.1080/10916466.2017.1336771

    Article  CAS  Google Scholar 

  26. Shirokoff, J. and Lye, L., Formerly Recent Patents on Corrosion Sci., 2019, vol. 9, no. 1, pp. 28–40. https://doi.org/10.2174/2352094909666190401205036

    Article  Google Scholar 

  27. Kam’yanov, V.F., Bodraya, N.V., Sivirilov, P.P., Unger, F.G., Filimonova, T.A., and Chernyavskii, V.N., Petrol. Chem., 1989, vol. 29, no. 1, pp. 1–13. https://doi.org/10.1016/0031-6458(89)90001-4

    Article  Google Scholar 

  28. Andersen, S.I., Jensen, J.O., and Speight, J.G., Energy Fuels, 2005, vol. 19, pp. 2371–2377. https://doi.org/10.1021/ef050039v

    Article  CAS  Google Scholar 

  29. Trejo, F., Ancheyta, J., Morgan, T.J., Herod, A.A., and Kandiyoti, R., Energy Fuels, 2007, vol. 21, pp. 2121–2128. https://doi.org/10.1021/ef060621z

    Article  CAS  Google Scholar 

  30. Kayukova, G.P., Gubaidullin, A.T., Petrov, S.M., Romanov, G.V., Petrukhina, N.N., and Vakhin, A.V., Energy Fuels, 2016, vol. 30, pp. 773–783. https://doi.org/10.1021/acs.energyfuels.5b01328

    Article  CAS  Google Scholar 

  31. Al Humaidan, F.S., Hauser, A., Rana, M.S., Lababidi, H.M.S., and Behbehani, M., Fuel, 2015, vol. 150, pp. 558–564. https://doi.org/

    Article  CAS  Google Scholar 

  32. Tanaka, R., Sato, E., Hunt, J.E., Winans, R.E., Sato, S., and Takanohashi, T., Energy Fuels, 2004, vol. 18, pp. 1118–1125. https://doi.org/10.1021/ef034082z

    Article  CAS  Google Scholar 

  33. Kayukova, G.P., Kiyamova, A.M., and Romanov, G.V., Petrol. Chem., 2012, vol. 52, pp. 5–14. https://doi.org/10.1134/S0965544111060089

    Article  CAS  Google Scholar 

  34. Sheng, Q., Wang, G., Jin, N., Husein, M.M., and Gao, J., Fuel, 2019, vol. 255, pp. 115736. https://doi.org/10.1016/j.fuel.2019.115736

    Article  CAS  Google Scholar 

  35. Nguyen, N.T., Kang, K.H., Lee, C.W., Kim, G.T., Park, S., and Park, Y.-K., Fuel, 2019, vol. 235, pp. 677–686. https://doi.org/10.1016/j.fuel.2018.08.035

    Article  CAS  Google Scholar 

  36. Zhu, D.Q., Liu, Q.K., Tan, X.C., Yang, J.Y., Yuan, P.Q., Cheng, Z.M., and Yuan, W.K., Energy Fuels, 2015, vol. 29, pp. 7807–7815. https://doi.org/10.1021/acs.energyfuels.5b01664

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the state assignment for IPC SB RAS (project V.46.2.2, NIOKTR no. AAAAA17-117030310199-1) and for IT SB RAS (project III.18.2.1, NIOKTR No. AAAA-A17-117030910025-7), with financial support from the Ministry of Sciences and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. R. Antipenko or O. N. Fedyaeva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 4, pp. 547–554 https://doi.org/10.31857/S0028242121040109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipenko, V.R., Fedyaeva, O.N. & Vostrikov, A.A. Macrostructural Parameters of Asphaltene Nanoaggregates in Natural Asphaltite and in Its Supercritical Water Conversion Products. Pet. Chem. 61, 787–793 (2021). https://doi.org/10.1134/S0965544121070069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121070069

Keywords:

Navigation