Skip to main content
Log in

Micro-Mesoporous Catalyst Based on Natural Aluminosilicate Nanotubes and ZSM-5 Zeolite for Methanol Conversion to Hydrocarbons

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A methanol conversion catalyst based on natural aluminosilicate nanotubes and H–ZSM-5 zeolite was synthesized. Its textural, structural, and acid properties were studied by low-temperature nitrogen adsorption–desorption, transmission electron microscopy, X-ray diffraction analysis, and temperature-programmed ammonia desorption. The influence exerted on the methanol conversion and product distribution by the reaction temperature (380–460°С), pressure (0.1–0.5 MPa), and feed space velocity (0.5–1 h–1) was studied. The catalyst based on halloysite aluminosilicate nanotubes showed high selectivity in formation of both lower olefins and aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Valecillos, J., Epelde, E., Albo, J., Aguayo, A.T., Bilbao, J., and Castaño, P., Catal. Today, 2020, vol. 348, pp. 243–256. https://doi.org/10.1016/j.cattod.2019.07.059

    Article  CAS  Google Scholar 

  2. Wang, C., Yang, M., Zhang, W., Su, X., Xu, S., Tian, P., and Liu, Z., RSC Adv., 2016, vol. 6, no. 53, pp. 47864–47872. https://doi.org/10.1039/C6RA06428K

    Article  CAS  Google Scholar 

  3. Bleken, F., Skistad, W., Barbera, K., Kustova, M., Bordiga, S., and Beato, P., Phys. Chem. Chem. Phys., 2011, vol. 3, pp. 2539–2549. https://doi.org/10.1039/C0CP01982H

    Article  Google Scholar 

  4. Jamil, A.K., Nishitoba, T., Ahmed, M.H.M., Yamani, Z.H., Yokoi, T., and Muraza, O., Energy Fuels, 2019, pp. 12679–12684. https://doi.org/10.1021/acs.energyfuels.9b03009

  5. Yarulina, I., Wispelaere, De K., Bailleul, S., Goetze, J., Radersma, M., and Abou-Hamad, E., Nature Chem., 2018, vol. 10, pp. 804–812. https://doi.org/10.1038/s41557-018-0081-0

    Article  CAS  Google Scholar 

  6. Xia, W., Wang, F., Mu, X., Chen, K., Takahashi, A., Nakamura, I., and Fujitani, T., Catal. Commun., 2017, vol. 91, pp. 62–66. https://doi.org/10.1016/j.catcom.2016.12.010

    Article  CAS  Google Scholar 

  7. Khadzhiev, S.N., Kolesnichenko, N.V., and Ezhova, N.N., Petrol. Chem., 2008, vol. 48, no. 5, pp. 325–334. https://doi.org/10.1134/S0965544108050010

    Article  Google Scholar 

  8. Rostamizadeh, M. and Yaripour, F., Fuel, 2016, vol. 181, pp. 537–546. https://doi.org/10.1016/j.fuel.2016.05.019

    Article  CAS  Google Scholar 

  9. Losch, P., Laugel, G., Martinez-Espin, J.S., Chavan, S., Olsbye, U., and Louis, B., Top. Catal., 2015, vol. 58, nos. 14–17, pp. 826–832. https://doi.org/10.1007/s11244-015-0449-y

    Article  CAS  Google Scholar 

  10. Meng, Y., Genuino, H.C., Kuo, C.-H., Huang, H., Chen, S.-Y., Zhang, L., and Suib, S.L., J. Am. Chem. Soc., 2013, vol. 135, no. 23, pp. 8594–8605. https://doi.org/10.1021/ja4013936

    Article  CAS  PubMed  Google Scholar 

  11. Mentzel, U.V., Højholt, K.T., Holm, M.S., Fehrmann, R., and Beato, P., Appl. Catal. A: General, 2012, vols. 417– 418, pp. 290–297. https://doi.org/10.1016/j.apcata.2012.01.003

    Article  CAS  Google Scholar 

  12. Yang, Y., Sun, C., Du, J., Yue, Y., Hua, W., Zhang, C., and Xu, H., Catal. Commun., 2012, vol. 24, pp. 44–47. https://doi.org/10.1016/j.catcom.2012.03.013

    Article  CAS  Google Scholar 

  13. Afokin, M.I., Smirnova, E.M., Starozhitskaya, A.V., Gushchin, P.A., Glotov, A.P., and Maksimov, A.L., Chem. Technol. Fuels Oils, 2020, vol. 55, pp. 682–688. https://doi.org/10.1007/s10553-020-01082-1

    Article  CAS  Google Scholar 

  14. Glotov, A.P., Roldugina, E.A., Artemova, M.I., Smirnova, E.M., Demikhova, N.R., Stytsenko, V.D., Egazar’yants, S.V., Maksimov, A.L., and Vinokurov, V.A., Russ. J. Appl. Chem., 2018, vol. 91, no. 8, pp. 1353−1362. https://doi.org/10.1134/S1070427218080141

    Article  CAS  Google Scholar 

  15. Vinokurov, V.A., Stavitskaya, A.V., Chudakov, Ya.A., Glotov, A.P., Ivanov, E.V., Gushchin, P.A., Lvov, Yu.M., Maximov, A.L., Muradov, A.V., and Karakhanov, E.A., Pure Appl. Chem., 2018, vol. 90, no. 5, pp. 825–832. https://doi.org/10.1515/pac-2017-0913

    Article  CAS  Google Scholar 

  16. Vinokurov, V.A., Stavitskaya, A.V., Glotov, A.P., Novikov, A.A., Zolotukhina, A.V., Kotelev, M.S., Gushchin, P.A., Ivanov, E.V., Darrat, Y., and Lvov, Yu.M., J. Solid State Chem., 2018, vol. 268, pp. 182–189. https://doi.org/10.1016/j.jssc.2018.08.042

    Article  CAS  Google Scholar 

  17. Lai, S.H., Meng, D., Zhan, W., Guo, Y., Guo, Y., Zhang, Z., and Lu, G., RSC Adv., 2015, vol. 5, pp. 90235–90244. https://doi.org/10.1039/C5RA12505G

    Article  CAS  Google Scholar 

  18. Lin, B., Wang, J., Huang, Q., Ali, M., and Chi, Y., J. Anal. Appl. Pyrol., 2017, vol. 128, pp. 291–303. https://doi.org/10.1016/j.jaap.2017.09.021

    Article  CAS  Google Scholar 

  19. Wu, X., Liu, C., Qi, H., Zhang, X., Dai, J., Zhang, Q., Zhang, L., Wu, Y., and Peng, X., Appl. Clay Sci., 2016, vol. 119, pp. 284–293. https://doi.org/10.1016/j.clay.2015.10.029

    Article  CAS  Google Scholar 

  20. Roldugina, E.A., Glotov, A.P., Isakov, A.L., Maksimov, A.L., Vinokurov, V.A., and Karakhanov, E.A., Russ. J. Appl. Chem., 2019, vol. 92, pp. 1170−1178. https://doi.org/10.1134/S1070427219080172

    Article  CAS  Google Scholar 

  21. Glotov, A.P., Roldugina, E.A., Artemova, M.I., Smirnova, E.M., Demikhova, N.R., Stytsenko, V.D., and Vinokurov, V.A., Russ. J. Appl. Chem., 2018, vol. 91, no. 8, pp. 1353–1362. https://doi.org/10.1134/S1070427218080141

    Article  CAS  Google Scholar 

  22. Glotov, A.P., Stavitskaya, A.V., Chudakov, Y.A., Artemova, M.I., Smirnova, E.M., Demikhova, N.R., and Vinokurov, V.A., Petrol. Chem., 2018, vol. 58, pp. 1221–1226. https://doi.org/10.1134/S0965544118140013

    Article  CAS  Google Scholar 

  23. Glotov, A.P., Artemova, M.I., Demikhova, N.R., Smirnova, E.M., Ivanov, E.V., Gushchin, P.A., and Vinokurov, V.A., Petrol. Сhem., 2019, vol. 59, pp. 1226–1234. https://doi.org/10.1134/S0965544119110033

    Article  CAS  Google Scholar 

  24. Ni, Y., Sun, A., Wu, X., Hai, G., Hu, J., Li, T., and Li, G., J. Natural Gas Chem., 2011, vol. 20, no. 3, pp. 237–242. https://doi.org/10.1016/S1003-9953(10)60184-3

    Article  CAS  Google Scholar 

  25. Golubev, K.B., Batova, T.I., Kolesnichenko, N.V., and Maximov, A.L., Catal. Commun., 2019, vol. 129, article 105744. https://doi.org/10.1016/j.catcom.2019.105744

  26. Yang, Y., Sun, C., Du, J., Yue, Y., Hua, W., Zhang, C., and Xu, H., Catal. Commun., 2012, vol. 24, pp. 44–47. https://doi.org/10.1016/j.catcom.2012.03.013

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 20-38-90269). Analysis of gaseous and liquid products of methanol conversion was financially supported by the Ministry of Science and Higher Education of the Russian Federation (agreement with Khromos Inzhiniring no. 075-11-2019-037 of November 22, 2019: Development of High-Tech Production of Boxes for Quality Control of Process Gases and Liquids, Based on On-Line Commercial Chromatographic Analyzers with Using Digital Technologies and Ensuring Monitoring of the Correctness and Reliability of Their Operation in the On-Line Mode, agreement between Khromos Inzhiniring and Gubkin National University of Oil and Gas no. 555-19 of September 20, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Smirnova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 4, pp. 532–539 https://doi.org/10.31857/S0028242121040080.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E.M., Melnikov, D.P., Demikhova, N.R. et al. Micro-Mesoporous Catalyst Based on Natural Aluminosilicate Nanotubes and ZSM-5 Zeolite for Methanol Conversion to Hydrocarbons. Pet. Chem. 61, 773–780 (2021). https://doi.org/10.1134/S0965544121070082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121070082

Keywords:

Navigation