Skip to main content
Log in

Synthesis of Highly Active Nanozeolites Using Methods of Mechanical Milling, Recrystallization, and Dealumination (A Review)

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Methods for preparing zeolites with the particle size of 50–200 nm using mechanical milling on bead mills (top-down approach) are analyzed. The milling can be described by a first-order rate equation, but mathematical models allowing prediction of the particle size and degree of crystallinity of zeolite after milling, based on the process parameters, are still lacking. The milling is accompanied by degradation of the zeolite lattice, leading to a decrease in the zeolite crystallinity and activity in catalytic reactions. Recrystallization and dealumination may be promising ways to restore the zeolite structure after milling; in this case, the choice of the conditions for such posttreatment is of crucial importance. Evolution of textural and acid properties of zeolites in the course of milling is considered, and the effect of milling conditions on the catalytic activity of zeolites in various reactions is discussed. The main outcome from a decrease in the size of zeolite catalysts is an increase in their activity and a decrease in the deactivation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Notes

  1. Publication permission of the American Chemical Society of November 19, 2020.

  2. Publication permission of the American Chemical Society of November 19, 2020.

  3. Republication permission of the Royal Society of Chemistry of November 03, 2020.

REFERENCES

  1. Armor, J.N., Catal. Today, 2011, vol. 163, no. 1, pp. 3–9. https://doi.org/10.1016/j.cattod.2009.11.019

    Article  CAS  Google Scholar 

  2. Dement’ev, K.I., Sagaradze, A.D., Kuznetsov, P.S., Palankoev, T.A., and Maximov, A.L., Ind. Eng. Chem. Res., 2020, vol. 59, no. 36, pp. 15875–15883. https://doi.org/10.1021/acs.iecr.0c02753

    Article  CAS  Google Scholar 

  3. Khadzhiev, S.N., Gerzeliev, I.M., Kapustin, V.M., Kadiev, Kh.M., Dement’ev, K.I., and Pakhmanova, O.A., Petrol. Chem., 2011, vol. 51, no. 1, pp. 32–38. https://doi.org/10.1134/S0965544111010087

    Article  CAS  Google Scholar 

  4. Rahimi, N. and Karimzadeh, R., Appl. Catal. A: General, 2011, vol. 398, nos. 1–2, pp. 1–17. https://doi.org/10.1016/j.apcata.2011.03.009

    Article  CAS  Google Scholar 

  5. Yoshimura, Y., Kijima, N., Hayakawa, T., Murata, K., Suzuki, K., Mizukami, F., Matano, K., Konishi, T., Oikawa, T., Saito, M., Shiojima, T., Shiozawa, K., Wakui, K., Sawada, G., Sato, K., Matsuo, S., and Yamaoka, N., Catal. Surv. Jpn., 2001, vol. 4, no. 2, pp. 157–167. https://doi.org/10.1023/A:1011463606189

    Article  Google Scholar 

  6. Linssen, T., Cassiers, K., Cool, P., and Vansant, E.F., Adv. Colloid Interface Sci., 2003, vol. 103, no. 2, pp. 121–147. https://doi.org/10.1016/S0001-8686(02)00084-2

    Article  CAS  PubMed  Google Scholar 

  7. Hunger, M., Catal. Rev., 1997, vol. 39, no. 4, pp. 345–393. https://doi.org/10.1080/01614949708007100

    Article  CAS  Google Scholar 

  8. Coster, D., Blumenfeld, A.L., and Fripiat, J.J., J. Phys. Chem., 1994, vol. 98, no. 24, pp. 6201–6211. https://doi.org/10.1021/j100075a024

    Article  CAS  Google Scholar 

  9. Abbot, J. and Guerzoni, F.N., Appl. Catal. A: General, 1992, vol. 85, no. 2, pp. 173–188. https://doi.org/10.1016/0926-860X(92)80150-B

    Article  CAS  Google Scholar 

  10. Ward, J.W., J. Catal., 1969, vol. 14, no. 4, pp. 365–378. https://doi.org/10.1016/0021-9517(69)90327-3

    Article  CAS  Google Scholar 

  11. Cundy, C.S. and Cox, P.A., Chem. Rev., 2003, vol. 103, no. 3, pp. 663–702. https://doi.org/10.1021/cr020060i11

    Article  CAS  PubMed  Google Scholar 

  12. Król, M., Crystals, 2020, vol. 10, no. 7, pp. 622–630. https://doi.org/10.3390/cryst10070622

    Article  CAS  Google Scholar 

  13. Weckhuysen, B.M. and Yu, J., Chem. Soc. Rev., 2015, vol. 44, no. 20, pp. 7022–7024. https://doi.org/10.1039/C5CS90100F

    Article  CAS  PubMed  Google Scholar 

  14. Weitkamp, J., Solid State Ionics, 2000, vol. 131, nos. 1–2, pp. 175–188. https://doi.org/10.1016/S0167-2738(00)00632-9

    Article  CAS  Google Scholar 

  15. Vogt, E.T.С. and Weckhuysen, B.M., Chem. Soc. Rev., 2015, vol. 44, no. 20, pp. 7342–7370. https://doi.org/10.1039/C5CS00376H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hussain, A.I., Palani, A., Aitani, A.M., Čejka, J., Shamzhy, M., Kubů, M., and Al-Khattaf, S.S., Fuel Process. Technol., 2017, vol. 161, pp. 23–32. https://doi.org/10.1016/j.fuproc.2017.01.050

    Article  CAS  Google Scholar 

  17. Awayssa, O., Al-Yassir, N., Aitani, A., and Al-Khattaf, S., Appl. Catal. A: General, 2014, vol. 477, pp. 172–183. https://doi.org/10.1016/j.apcata.2014.03.021

    Article  CAS  Google Scholar 

  18. Hussain, A.I., Aitani, A.M., Kubů, M., Čejka, J., and Al-Khattaf, S., Fuel, 2016, vol. 167, pp. 226–239. https://doi.org/10.1016/j.fuel.2015.11.065

    Article  CAS  Google Scholar 

  19. Di Renzo, F., Catal. Today, 1998, vol. 41, nos. 1–3, pp. 37–40. https://doi.org/10.1016/S0920-5861(98)00036-4

    Article  CAS  Google Scholar 

  20. Zhuman, B., Saepurahman, Anis, S.F., and Hashaikeh, R., Micropor. Mesopor. Mater., 2019, vol. 273, pp. 19–25. https://doi.org/10.1016/j.micromeso.2018.06.041

    Article  CAS  Google Scholar 

  21. Huang, M., Auroux, A., and Kaliaguine, S., Micropor. Mater., 1995, vol. 5, nos. 1–2, pp. 17–27. https://doi.org/10.1016/0927-6513(95)00028-8

    Article  CAS  Google Scholar 

  22. Williams, B.A., Babitz, S.M., Miller, J.T., Snurr, R.Q., and Kung, H.H., Appl. Catal. A: General, 1999, vol. 177, no. 2, pp. 161–175. https://doi.org/10.1016/S0926-860X(98)00264-6

    Article  CAS  Google Scholar 

  23. Hočevar, S. and Držaj, B., J. Catal., 1982, vol. 73, no. 2, pp. 205–215. https://doi.org/10.1016/0021-9517(82)90095-1

    Article  Google Scholar 

  24. Bibby, D.M., Howe, R.F., and McLellan, G.D., Appl. Catal. A: General, 1992, vol. 93, no. 1, pp. 1–34. https://doi.org/10.1016/0926-860X(92)80291-J

    Article  CAS  Google Scholar 

  25. Gopalakrishnan, S., Yada, S., Muench, J., Selvam, T., Schwieger, W., Sommer, M., and Peukert, W., Appl. Catal. A: General, 2007, vol. 327, no. 2, pp. 132–138. https://doi.org/10.1016/j.apcata.2007.03.003

    Article  CAS  Google Scholar 

  26. Akçay, K., Sirkecioğlu, A., Tatlıer, M., Savaşçı, Ö.T., and Erdem-Şenatalar, A., Powder Technol., 2004, vol. 142, nos. 2–3, pp. 121–128. https://doi.org/10.1016/j.powtec.2004.03.012

    Article  CAS  Google Scholar 

  27. Kosanović, C., Subotić, B., and Čižmek, A., Thermochim. Acta, 1996, vol. 276, pp. 91–103. https://doi.org/10.1016/0040-6031(95)02792-0

    Article  Google Scholar 

  28. Kamali, M., Vaezifar, S., Kolahduzan, H., Malekpour, A., and Abdi, M.R., Powder Technol., 2009, vol. 189, no. 1, pp. 52–56. https://doi.org/10.1016/j.powtec.2008.05.015

    Article  CAS  Google Scholar 

  29. Morales-Pacheco, P., Alvarez-Ramirez, F., Del Angel, P., Bucio, L., and Domínguez, J.M., J. Phys. Chem. C, 2007, vol. 111, no. 6, pp. 2368–2378. https://doi.org/10.1021/jp064780v

    Article  CAS  Google Scholar 

  30. Morales-Pacheco, P., Alvarez, F., Bucio, L., and Domínguez, J.M., J. Phys. Chem. C, 2009, vol. 113, no. 6, pp. 2247–2255. https://doi.org/10.1021/jp8070713

    Article  CAS  Google Scholar 

  31. Xie, J. and Kaliaguine, S., Appl. Catal. A: General, 1997, vol. 148, no. 2, pp. 415–423. https://doi.org/10.1016/S0926-860X(96)00234-7

    Article  CAS  Google Scholar 

  32. Yang, Z., Liu, Y., Yu, C., Gu, X., and Xu, N., J. Membr. Sci., 2012, vols. 392–393, pp. 18–28. https://doi.org/10.1016/j.memsci.2011.11.036

    Article  CAS  Google Scholar 

  33. Saepurahman and Hashaikeh, R., Mater. Chem. Phys., 2018, vol. 220, pp. 322–330. https://doi.org/10.1016/j.matchemphys.2018.08.080

    Article  CAS  Google Scholar 

  34. Nada, M.H., Larsen, S.C., and Gillan, E.G., Nanoscale Adv., 2019, vol. 1, no. 10, pp. 3918–3928. https://doi.org/10.1039/C9NA00399A

    Article  CAS  Google Scholar 

  35. Kostova, N.G., Spojakina, A.A., Dutková, E., and Baláž, P., J. Phys. Chem. Solids, 2007, vol. 68, nos. 5–6, pp. 1169–1172. https://doi.org/10.1016/j.jpcs.2007.02.024

    Article  CAS  Google Scholar 

  36. Baghbanian, S.M., Rezaei, N., and Tashakkorian, H., Green Chem., 2013, vol. 15, no. 12, pp. 3446–3458. https://doi.org/10.1039/C3GC41302K

    Article  CAS  Google Scholar 

  37. Lyu, H., Gao, B., He, F., Zimmerman, A.R., Ding, C., Huang, H., and Tang, J., Environ. Pollut., 2018, vol. 233, pp. 54–63. https://doi.org/10.1016/j.envpol.2017.10.037

    Article  CAS  PubMed  Google Scholar 

  38. Kim, T.H., Kwak, H., Kim, T.H., and Oh, K.K., Energies, 2020, vol. 13, no. 2, pp. 352–367. https://doi.org/10.3390/en13020352

    Article  CAS  Google Scholar 

  39. Salah, N., Habib, S.S., Khan, Z.H., Memic, A., Azam, A., Alarfaj, E., Zahed, N., and Al-Hamedi, S., Int. J. Nanomed., 2011, vol. 6, pp. 863–869. https://doi.org/10.2147/IJN.S18267

    Article  CAS  Google Scholar 

  40. Zhang, D., Cai, R., Zhou, Y., Shao, Z., Liao, X.-Z., and Ma, Z.-F., Electrochim. Acta, 2010, vol. 55, no. 8, pp. 2653–2661. https://doi.org/10.1016/j.electacta.2009.12.023

    Article  CAS  Google Scholar 

  41. Koch, C.C., Nanostruct. Mater., 1993, vol. 2, no. 2, pp. 109–129. https://doi.org/10.1016/0965-9773(93)90016-5

    Article  CAS  Google Scholar 

  42. Weeber, A.W. and Bakker, H., Physica B, 1988, vol. 153, nos. 1–3, pp. 93–135. https://doi.org/10.1016/0921-4526(88)90038-5

    Article  CAS  Google Scholar 

  43. Baláž, M., Adv. Colloid Interface Sci., 2018, vol. 256, pp. 256–275. https://doi.org/10.1016/j.cis.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  44. Blázquez, J.S., Ipus, J.J., Moreno-Ramírez, L.M., Álvarez-Gómez, J.M., Sánchez-Jiménez, D., LozanoPérez, S., Franco, V., and Conde, A., J. Mater. Sci., 2017, vol. 52, pp. 11834–11850. https://doi.org/10.1007/s10853-017-1089-3

    Article  CAS  Google Scholar 

  45. M’hamed, M.O., Synth. Commun., 2015, vol. 45, no. 22, pp. 2511–2528. https://doi.org/10.1080/00397911.2015.1058396

    Article  CAS  Google Scholar 

  46. Chelgani, S.C., Parian, M., Parapari, P.S., Ghorbani, Y., and Rosenkranz, J., J. Mater. Res. Technol., 2019, vol. 8, no. 5, pp. 5004–5011. https://doi.org/10.1016/j.jmrt.2019.07.053

    Article  CAS  Google Scholar 

  47. Mahmoud, A.E.D., Stolle, A., and Stelter, M., ACS Sustain. Chem. Eng., 2018, vol. 6, no. 5, pp. 6358–6369. https://doi.org/10.1021/acssuschemeng.8b00147

    Article  CAS  Google Scholar 

  48. Dilbas, H., Çakır, Ö., and Atiş, C.D., Constr. Build. Mater., 2019, vol. 212, pp. 716–726. https://doi.org/10.1016/j.conbuildmat.2019.04.007

    Article  Google Scholar 

  49. Kengkhetkit, N. and Amornsakchai, T., Ind. Crops Prod., 2012, vol. 40, pp. 55–61. https://doi.org/10.1016/j.indcrop.2012.02.037

    Article  CAS  Google Scholar 

  50. Mallampati, S.R., Lee, B.H., Mitoma, Y., and Simion, C., J. Cleaner Prod., 2018, vol. 171, pp. 66–75. https://doi.org/10.1016/j.jclepro.2017.09.279

    Article  CAS  Google Scholar 

  51. Perrin-Sarazin, F., Sepehr, M., Bouaricha, S., and Denault, J., Polym. Eng. Sci., 2009, vol. 49, no. 4, pp. 651–665. https://doi.org/10.1002/pen.21295

    Article  CAS  Google Scholar 

  52. Stamboliadis, E., Emmanouilidis, S., and Petrakis, E., Geomaterials, 2011, vol. 1, no. 2, pp. 28–32. https://doi.org/10.4236/gm.2011.12005

    Article  Google Scholar 

  53. Klimpel, R., Powder Technol., 1982, vol. 32, no. 2, pp. 267–277. https://doi.org/10.1016/0032-5910(82)85028-6

    Article  CAS  Google Scholar 

  54. Tangsathitkulchai, C., Int. J. Miner. Process, 2003, vol. 69, nos. 1–4, pp. 29–47. https://doi.org/10.1016/S0301-7516(02)00061-3

    Article  CAS  Google Scholar 

  55. Jiang, S., Li, X., Zuo, D., Wang, H., Liu, Z., and Xu, R., J. Rare Earths, 2012, vol. 30, no. 11, pp. 1116–1122. https://doi.org/10.1016/S1002-0721(12)60190-2

    Article  CAS  Google Scholar 

  56. Auroux, A., Huang, M., and Kaliaguine, S., Langmuir, 1996, vol. 12, no. 20, pp. 4803–4807. https://doi.org/10.1021/la960077u

    Article  CAS  Google Scholar 

  57. Cui, Y., Xu, Y., Lu, J., Suzuki, Y., and Zhang, Z.-G., Appl. Catal. A: General, 2011, vol. 393, nos. 1–2, pp. 348–358. https://doi.org/10.1016/j.apcata.2010.12.017

    Article  CAS  Google Scholar 

  58. Mukhtar, N.Z.F., Borhan, M.Z., Rusop, M., and Abdullah, S., Adv. Mater. Res., 2013, vol. 795, pp. 711–715. https://doi.org/10.4028/www.scientific.net/AMR.795.711

    Article  CAS  Google Scholar 

  59. Chen, L.-H., Li, X.-Y., Rooke, J.C., Zhang, Y.-H., Yang, X.-Y., Tang, Y., Xiao, F.-S., and Su, B.-L., J. Mater. Chem., 2012, vol. 22, no. 34, pp. 17381–17403. https://doi.org/10.1039/C2JM31957H

    Article  CAS  Google Scholar 

  60. Liu, Z., Nomura, N., Nishioka, D., Hotta, Y., Matsuo, T., Oshima, K., Yanaba, Y., Yoshikawa, T., Ohara, K., Kohara, S., Takewaki, T., Okubo, T., and Wakihara, T., Chem. Commun., 2015, vol. 51, no. 63, pp. 12567–12570. https://doi.org/10.1039/C5CC04542H

    Article  CAS  Google Scholar 

  61. Kadja, G.T.M., Suprianti, T.R., Ilmi, M.M., Khalim, M., Mukti, R.R., and Subagio, Micropor. Mesopor. Mater., 2020, vol. 308, pp. 1–8. https://doi.org/10.1016/j.micromeso.2020.110550

    Article  CAS  Google Scholar 

  62. Silaghi, M.-C., Chizallet, C., and Raybaud, P., Micropor. Mesopor. Mater., 2014, vol. 191, pp. 82–96. https://doi.org/10.1016/j.micromeso.2014.02.040

    Article  CAS  Google Scholar 

  63. Austin, L.G. and Luckie, P.T., Powder Technol., 1972, vol. 5, no. 4, pp. 215–222. https://doi.org/10.1016/0032-5910(72)80022-6

    Article  Google Scholar 

  64. Austin, L., Shoji, K., Bhatia, V., Jindal, V., Savage, K., and Klimpel, R., Ind. Eng. Chem. Process Des. Dev., 1976, vol. 15, no. 1, pp. 187–196. https://doi.org/10.1021/i260057a032

    Article  CAS  Google Scholar 

  65. Tangsathitkulchai, C., Powder Technol., 2002, vol. 124, nos. 1–2, pp. 67–75. https://doi.org/10.1016/S0032-5910(01)00477-6

    Article  CAS  Google Scholar 

  66. Rajamani, R.K. and Guo, D., Int. J. Miner. Process, 1992, vol. 34, nos. 1–2, pp. 103–118. https://doi.org/10.1016/0301-7516(92)90018-R

    Article  CAS  Google Scholar 

  67. Austin, L.G. and Bagga, P., Powder Technol., 1981, vol. 28, no. 1, pp. 83–90. https://doi.org/10.1016/0032-5910(81)87014-3

    Article  Google Scholar 

  68. Tangsathitkulchai, C. and Austin, L.G., Powder Technol., 1985, vol. 42, no. 3, pp. 287–296. https://doi.org/10.1016/0032-5910(85)80068-1

    Article  CAS  Google Scholar 

  69. Tangsathitkulchai, C. and Austin, L.G., Powder Technol., 1989, vol. 59, no. 4, pp. 285–293. https://doi.org/10.1016/0032-5910(89)80087-7

    Article  CAS  Google Scholar 

  70. Austin, L.G., Yekeler, M., Dumm, T.F., and Hogg, R., Part. Part. Syst. Charact., 1990, vol. 7, nos. 1–4, pp. 242–247. https://doi.org/10.1002/ppsc.19900070139

    Article  CAS  Google Scholar 

  71. Yekeler, M., Ozkan, A., and Austin, L.G., Powder Technol., 2001, vol. 114, nos. 1–3, pp. 224–228. https://doi.org/10.1016/S0032-5910(00)00326-0

    Article  CAS  Google Scholar 

  72. Ozkan, A., Yekeler, M., and Calkaya, M., Int. J. Miner. Process, 2009, vol. 90, nos. 1–4, pp. 67–73. https://doi.org/10.1016/j.minpro.2008.10.006

    Article  CAS  Google Scholar 

  73. Bégin-Colin, S., Girot, T., Le Caër, G., and Mocellin, A., J. Solid State Chem., 2000, vol. 149, no. 1, pp. 41–48. https://doi.org/10.1006/jssc.1999.8491

    Article  CAS  Google Scholar 

  74. Blachou, V., Goula, D., and Philippopoulos, C., Ind. Eng. Chem. Res., 1992, vol. 31, no. 1, pp. 364–369. https://doi.org/10.1021/ie00001a049

    Article  CAS  Google Scholar 

  75. Lapidus, L., Digital Computation for Chemical Engineers, New York: McGraw-Hill, 1962, pp. 96–99.

  76. Beck, J.V. and Arnold, K.J., Parameter Estimation in Engineering and Science, New York: Wiley, 1977, pp. 368–372.

  77. Kosanović, C., Bronić, J., Subotić, B., Smit, I., Stubičar, M., Tonejc, A., and Yamamoto, T., Zeolites, 1993, vol. 13, no. 4, pp. 261–268. https://doi.org/10.1016/0144-2449(93)90004-M

    Article  Google Scholar 

  78. Kosanović, C., Čižmek, A., Subotić, B., Šmit, I., Stubičar, M., and Tonejc, A., Zeolites, 1995, vol. 15, no. 1, pp. 51–57. https://doi.org/10.1016/0144-2449(94)00018-N

    Article  Google Scholar 

  79. Kharitonov, A.S., Fenelonov, V.B., Voskresenskaya, T.P., Rudina, N.A., Molchanov, V.V., Plyasova, L.M., and Panov, G.I., Zeolites, 1995, vol. 15, no. 3, pp. 253–258. https://doi.org/10.1016/0144-2449(94)00019-O

    Article  CAS  Google Scholar 

  80. Wakihara, T., Sato, K., Inagaki, S., Tatami, J., Komeya, K., Meguro, T., and Kubota, Y., ACS Appl. Mater. Interfaces, 2010, vol. 2, no. 10, pp. 2715–2718. https://doi.org/10.1021/am100642w

    Article  CAS  Google Scholar 

  81. Wakihara, T., Ichikawa, R., Tatami, J., Endo, A., Yoshida, K., Sasaki, Y., Komeya, K., and Meguro, T., Cryst. Growth Des., 2011, vol. 11, no. 4, pp. 955–958. https://doi.org/10.1021/cg2001656

    Article  CAS  Google Scholar 

  82. Wakihara, T., Sato, K., Sato, K., Tatami, J., Kohara, S., Komeya, K., and Meguro, T., J. Ceram. Soc. Jpn., 2012, vol. 120, no. 1404, pp. 341–343. https://doi.org/10.2109/jcersj2.120.341

    Article  CAS  Google Scholar 

  83. Wakihara, T., Ihara, A., Inagaki, S., Tatami, J., Sato, K., Komeya, K., Meguro, T., Kubota, Y., and Nakahira, A., Cryst. Growth Des., 2011, vol. 11, no. 11, pp. 5153–5158. https://doi.org/10.1021/cg201078r

    Article  CAS  Google Scholar 

  84. Inagaki, S., Shinoda, S., Hayashi, S., Wakihara, T., Yamazaki, H., Kondo, J.N., and Kubota, Y., Catal. Sci. Technol., 2016, vol. 6, no. 8, pp. 2598–2604. https://doi.org/10.1039/C5CY01644D

    Article  CAS  Google Scholar 

  85. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials VI. A Coll. of Papers Presented at the 36th Int. Conf. on Advanced Ceramics and Composites, Ohji, T., Singh, M., Halbig, M., and Mathur, S., Eds., Hoboken: Wiley, 2013, pp. 129–134.

  86. Kurniawan, T., Muraza, O., Hakeem, A.S., and Al-Amer, A.M., Cryst. Growth Des., 2017, vol. 17, no. 6, pp. 3313–3320. https://doi.org/10.1021/acs.cgd.7b00295

    Article  CAS  Google Scholar 

  87. Kurniawan, T., Muraza, O., Hakeem, A.S., Bakare, I.A., Nishitoba, T., Yokoi, T., Yamani, Z.H., and Al Amer, A.M., Energy Fuels, 2017, vol. 31, no. 11, pp. 12691–12700. https://doi.org/10.1021/acs.energyfuels.7b02555

    Article  CAS  Google Scholar 

  88. Zielinski, P.A., Van Neste, A., Akolekar, D.B., and Kaliaguine, S., Micropor. Mater., 1995, vol. 5, no. 3, pp. 123–133. https://doi.org/10.1016/0927-6513(95)00050-J

    Article  CAS  Google Scholar 

  89. Vuong, G.-T., Hoang, V.-T., Nguyen, D.-T., and Do, T.-O., Appl. Catal. A, 2010, vol. 382, no. 2, pp. 231–239. https://doi.org/10.1016/j.apcata.2010.04.049

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (project no. 17-73-30046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Kuznetsov.

Ethics declarations

A.L. Maximov is the Editor-in-Chief of Nanogeterogennyi Kataliz journal. The other authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, P.S., Dementiev, K.I., Palankoev, T.A. et al. Synthesis of Highly Active Nanozeolites Using Methods of Mechanical Milling, Recrystallization, and Dealumination (A Review). Pet. Chem. 61, 649–662 (2021). https://doi.org/10.1134/S0965544121050182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121050182

Keywords:

Navigation