Skip to main content

Advertisement

Log in

Heterosis for Biomass-Related Traits in Interspecific Triploid Hybrids of Willow (Salix spp.)

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Species hybridization is key for the improvement of shrub willow (Salix spp.) bioenergy crops because hybrids often display heterosis for yield. The development of high-yielding genotypes requires numerous broad attempts at hybridization followed by field evaluation and selection for stable performance. Selection of improved shrub willow varieties for use as a bioenergy crop involves evaluation of full-sib progeny in family-based selection trials. Improving the accuracy of evaluation through the use of components of yield would greatly improve the efficiency of selection. Heterosis for biomass yield in intra- and interspecific F1 and F2 shrub willow crosses, made between Salix sections and ploidy, was examined by utilizing a suite of morphological, physiological, and chemical composition traits collected over the course of 12 weeks in the greenhouse and over 3 years in the field. Triploid families generated from diploid S. viminalis and tetraploid S. miyabeana displayed the greatest levels of heterosis for harvestable biomass and biomass-related growth traits in the greenhouse and in the field. While intraspecific S. purpurea diploids exhibited low levels of heterosis for these traits, interspecific diploids produced moderate levels of heterosis in greenhouse experiments. Differences between greenhouse and field trial results can largely be explained by pest damage, which negatively impacted interspecific diploids. Heterosis for the traits that form the basis for biomass yield, including stem growth, foliar, and physiological traits, was quantified, and family-level differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smart LB, Cameron KD (2012) Shrub Willow. In: Kole C, Joshi CP, Shonnard DR (eds) Handbook of bioenergy crop plants. CRC Press, Boca Raton, pp 687–708. https://doi.org/10.1201/b11711-32

    Chapter  Google Scholar 

  2. Lauron-Moreau A, Pitre FE, Argus GW, Labrecque M, Brouillet L (2015) Phylogenetic relationships of American willows (Salix L., Salicaceae). PLoS ONE 10:e0121965. https://doi.org/10.1371/journal.pone.0121965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Argus GW (1997) Infrageneric classification of Salix (Salicaceae) in the New World. Syst Bot Monogr 52:1–121

    Article  Google Scholar 

  4. Argus GW (1974) An experimental study of hybridization and pollination in Salix (willow). Can J Bot 52:1613–1619. https://doi.org/10.1139/b74-212

    Article  Google Scholar 

  5. Tamura S, Kudo G (2000) Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis. Plant Ecol 147:185–192. https://doi.org/10.1023/A:1009870521175

    Article  Google Scholar 

  6. Percy DM, Argus GW, Cronk QC, Fazekas AJ, Kesanakurti PR, Burgess KS, Husband BC, Newmaster SG, Barrett SCH, Graham SW (2014) Understanding the spectacular failure of DNA barcoding in willows (Salix): does this result from a trans-specific selective sweep? Mol Ecol 23:4737–4756. https://doi.org/10.1111/mec.12837

    Article  CAS  PubMed  Google Scholar 

  7. Hardig TM, Brunsfeld SJ, Fritz RS, Morgan M, Orians CM (2000) Morphological and molecular evidence for hybridization and introgression in a willow (Salix) hybrid zone. Mol Ecol 9:9–24. https://doi.org/10.1046/j.1365-294X.2000.00757.x

    Article  CAS  PubMed  Google Scholar 

  8. Lin J, Gibbs JP, Smart LB (2009) Population genetic structure of native versus naturalized sympatric shrub willows (Salix: Salicaceae). Am J Bot 96:771–785. https://doi.org/10.3732/ajb.0800321

    Article  PubMed  Google Scholar 

  9. Heribert-Nilsson N (1918) Experimentelle studien uber variabiliät, Spaltung, Artibildung, und evoluation in der gattung Salix. Lunds Universitats Arsskrift N. F. Avd 2

  10. Karp A, Hanley S, Trybush S, Macalpine W, Pei MH, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels. J Integ Plant Biol 53.https://doi.org/10.1111/j.1744-7909.2010.01015.x

  11. Kuzovkina YA, Weih M, Romero MA, Charles J, Hust S, McIvor I, Karp A, Trybush S, Labrecque M, Teodorescu TI, Singh NB, Smart LB, Volk TA (2008) Salix: botany and global horticulture. Horticultural Reviews. Wiley, pp 447–489. https://doi.org/10.1002/9780470380147.ch8

  12. Birchler JA, Yao H, Chudalayandi S (2006) Unraveling the genetic basis of hybrid vigor. Proc Natl Acad Sci U S A 103:12957–12958. https://doi.org/10.1073/pnas.0605627103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348. https://doi.org/10.3732/ajb.0800079

    Article  PubMed  Google Scholar 

  14. Wagner ND, He L, Hörandl E (2020) Phylogenomic relationships and evolution of polyploid Salix species revealed by RAD sequencing data. Front Plant Sci 11:1077. https://doi.org/10.3389/fpls.2020.01077

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71. https://doi.org/10.1016/j.tplants.2009.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Volk TA, Abrahamson LP, Cameron KD, Castellano P, Corbin T, Fabio E, Johnson G, Kuzovkina-Eischen Y, Labrecque M, Miller R, Sidders D, Smart LB, Staver K, Stanosz GR, Kv R (2011) Yields of willow biomass crops across a range of sites in North America. Asp Appl Biol 112:67–74

    Google Scholar 

  17. Fabio ES, Volk TA, Miller RO, Serapiglia MJ, Kemanian AR, Montes F, Kuzovkina YA, Kling GJ, Smart LB (2017) Contributions of environment and genotype to variation in shrub willow biomass composition. Ind Crop Prod 108:149–161. https://doi.org/10.1016/j.indcrop.2017.06.030

    Article  Google Scholar 

  18. Zsuffa L, Mosseler A, Raj Y (1984) Prospects for interspecific hybridization in willow for biomass production. In: Perttu KL (ed) Ecology and management of forest biomass production systems. Report 15: Swedish University of Agricultural Sciences, Uppsala

  19. Orians CM (2000) The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plant–herbivore interactions. Am J Bot 87:1749–1756. https://doi.org/10.2307/2656824

    Article  CAS  PubMed  Google Scholar 

  20. Hallgren P, Ikonen A, Hjältén J, Roininen H (2003) Inheritance patterns of phenolics in F1, F2, and backcross hybrids of willows: implications for herbivore responses to hybrid plants. J Chem Ecol 29:1143–1158. https://doi.org/10.1023/A:1023829506473

    Article  CAS  PubMed  Google Scholar 

  21. Wang W, Carlson CH, Smart LB, Carlson JE (2020) Transcriptome analysis of contrasting resistance to herbivory by Empoasca fabae in two shrub willow species and their hybrid progeny. PLoS ONE 15:e0236586. https://doi.org/10.1371/journal.pone.0236586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johansson LKH, Alstrom S (2000) Field resistance to willow leaf rust Melampsora epitea in inter- and intraspecific hybrids of Salix viminalis and S. dasyclados. Eur J Plant Pathol 106:763–769. https://doi.org/10.1023/a:1026573219481

    Article  Google Scholar 

  23. Orians CM, Huang CH, Wild A, Dorfman KA, Zee P, Dao MTT, Fritz RS (1997) Willow hybridization differentially affects preference and performance of herbivorous beetles. Entomol Expr Appl 83:285–294. https://doi.org/10.1046/j.1570-7458.1997.00183.x

    Article  Google Scholar 

  24. Orians CM, Griffiths ME, Roche BM, Fritz RS (2000) Phenolic glycosides and condensed tannins in Salix sericea, S. eriocephala and their F1 hybrids: not all hybrids are created equal. Biochem Syst Ecol 28:619–632. https://doi.org/10.1016/S0305-1978(99)00101-5

    Article  CAS  PubMed  Google Scholar 

  25. Orians CM, Fritz RS, Hochwender CG, Albrectsen BR, Czesak ME (2013) How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies. Ann Bot 112:757–765. https://doi.org/10.1093/aob/mct002

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cameron KD, Phillips IS, Kopp RF, Volk TA, Maynard CA, Abrahamson LP, Smart LB (2008) Quantitative genetics of traits indicative of biomass production and heterosis in 34 full-sib F1 Salix eriocephala families. Bioenerg Res 1:80–90. https://doi.org/10.1007/s12155-008-9006-x

    Article  Google Scholar 

  27. Fabio ES, Kemanian AR, Montes F, Miller RO, Smart LB (2017) A mixed model approach for evaluating yield improvements in interspecific hybrids of shrub willow, a dedicated bioenergy crop. Ind Crop Prod 96:57–70. https://doi.org/10.1016/j.indcrop.2016.11.019

    Article  Google Scholar 

  28. Nilsson-Ehle H (1936) A gigasform found in nature from Populus tremula. Hereditas 21:379–382

    Article  Google Scholar 

  29. Fabio ES, Volk TA, Miller RO, Serapiglia MJ, Gauch HG, Van Rees KC, Hangs RD, Amichev BY, Kuzovkina YA, Labrecque M (2016) Genotype by environment interactions analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids. GCB Bioenergy 9:445–459. https://doi.org/10.1111/gcbb.12344

    Article  CAS  Google Scholar 

  30. Serapiglia MJ, Gouker FE, Smart LB (2014) Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. BMC Plant Biol 14:74. https://doi.org/10.1186/1471-2229-14-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carlson CH, Gouker FE, Crowell CR, Evans L, DiFazio SP, Smart CD, Smart LB (2019) Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.). Ann Bot 124:701–716. https://doi.org/10.1093/aob/mcz047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carlson CH, Smart LB (2016) Electrical capacitance as a predictor of root dry weight in shrub willow (Salix; Salicaceae) parents and progeny. Appl Plant Sci 4:e1600031. https://doi.org/10.3732/apps.1600031

    Article  Google Scholar 

  33. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  34. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  35. Velazco JG, Rodriguez-Alvarez MX, Boer MP, Jordan DR, Eilers PHC, Malosetti M, van Eeuwijk FA (2017) Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model. Theor Appl Genet 130:1375–1392. https://doi.org/10.1007/s00122-017-2894-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rodríguez-Álvarez MX, Lee D-J, Kneib T, Durbán M, Eilers P (2015) Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm. Stat Comp 25:941–957. https://doi.org/10.1007/s11222-014-9464-2

    Article  Google Scholar 

  37. Faliński JB (1980) Vegetation dynamics and sex structure of the populations of pioneer dioecious woody plants. Vegetatio 43:23–38. https://doi.org/10.1007/BF00121014

    Article  Google Scholar 

  38. Crawford R, Balfour J (1983) Female predominant sex ratios and physiological differentiation in arctic willows. J Ecol 71:149–160. https://doi.org/10.2307/2259968

    Article  Google Scholar 

  39. Alliende M, Harper J (1989) Demographic studies of a dioecious tree. I. Colonization, sex and age structure of a population of Salix cinerea. J Ecol 77:1029–1047. https://doi.org/10.2307/2260821

    Article  Google Scholar 

  40. Dawson TE, Bliss L (1989) Patterns of water use and the tissue water relations in the dioecious shrub, Salix arctica: the physiological basis for habitat partitioning between the sexes. Oecologia 79:332–343. https://doi.org/10.1007/BF00384312

    Article  CAS  PubMed  Google Scholar 

  41. Alström-Rapaport C, Lascoux M, Gullberg U (1997) Sex determination and sex ratio in the dioecious shrub Salix viminalis L. Theor Appl Genet 94:493–497. https://doi.org/10.1007/s001220050442

    Article  Google Scholar 

  42. Ueno N, Suyama Y, Seiwa K (2007) What makes the sex ratio female-biased in the dioecious tree Salix sachalinensis? J Ecol 95:951–959. https://doi.org/10.1111/j.1365-2745.2007.01269.x

    Article  Google Scholar 

  43. Che-Castaldo C, Crisafulli CM, Bishop JG, Fagan WF (2015) What causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape? Am J Bot 102(8):1309–1322. https://doi.org/10.3732/ajb.1500143

    Article  CAS  PubMed  Google Scholar 

  44. Yin T, DiFazio SP, Gunter LE, Zhang X, Sewell MM, Woolbright SA, Allan GJ, Kelleher CT, Douglas CJ, Wang M, Tuskan GA (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18:422–430. https://doi.org/10.1101/gr.7076308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gouker FE, Carlson CH, Zhu J, Evans LM, Smart CD, DiFazio SP, Smart LB (2021) Sexual dimorphism in the dioecious shrub willow, Salix purpurea L. Am J Bot (In press).https://doi.org/10.1101/2020.04.05.026427

  46. Fabio ES, Smart LB (2018) Effects of nitrogen fertilization in shrub willow short rotation coppice production—a quantitative review. GCB Bioenergy 10:548–564. https://doi.org/10.1111/gcbb.12507

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research (grant no. DE-SC0008375) and the US Department of Agriculture National Institute for Food and Agriculture (grant no. 2018-68005-27925). We are grateful to Smart Lab members Curt Carter, Lauren Carlson, and Dawn Fishback for their excellent technical assistance and to Fred Gouker and Eric Fabio for assistance with harvesting and processing plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence B. Smart.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1413 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, C.H., Smart, L.B. Heterosis for Biomass-Related Traits in Interspecific Triploid Hybrids of Willow (Salix spp.). Bioenerg. Res. 15, 1042–1056 (2022). https://doi.org/10.1007/s12155-021-10305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10305-0

Keywords

Navigation