Skip to main content
Log in

Spine representations for non-compact models of random geometry

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We provide a unified approach to the three main non-compact models of random geometry, namely the Brownian plane, the infinite-volume Brownian disk, and the Brownian half-plane. This approach allows us to investigate relations between these models, and in particular to prove that complements of hulls in the Brownian plane are infinite-volume Brownian disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Our notation is somewhat misleading since \({\mathcal {L}}^{(r+a,\infty )}\) and \({\mathcal {R}}^{(r+a,\infty )}\) both depend on r and not only on \(r+a\). Since r is fixed in most of this section, this should not be confusing.

  2. Unfortunately, it seems that the definition given in [9] is slightly incorrect. We believe that the construction below is the correct way to define the infinite-volume Brownian disk as it appears in the limit theorems proved in [9].

References

  1. Abraham, C.: Rescaled bipartite planar maps converge to the Brownian map. Ann. Inst. H. Poincaré Probab. Stat. 52, 575–595 (2016)

    Article  MathSciNet  Google Scholar 

  2. Abraham, R., Delmas, J.-F., Hoscheit, P.: A note on Gromov–Hausdorff–Prokhorov distance between (locally) compact measure spaces. Electron. J. Probab. 18, 1–21 (2013)

    Article  MathSciNet  Google Scholar 

  3. Abraham, C., Le Gall, J.-F.: Excursion theory for Brownian motion indexed by the Brownian tree. J. Eur. Math. Soc. (JEMS) 20, 2951–3016 (2018)

    Article  MathSciNet  Google Scholar 

  4. Addario-Berry, L., Albenque, M.: The scaling limit of random simple triangulations and random simple quadrangulations. Ann. Probab. 45, 2767–2825 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Addario-Berry, L., Albenque, M.: Convergence of odd-angulations via symmetrization of labeled trees. Ann. H. Lebesgue (to appear)

  6. Albenque, M., Holden, N., Sun, X.: Scaling limit of large triangulations of polygons. Electron. J. Probab. 25(135), 1–43 (2020)

    MATH  Google Scholar 

  7. Aldous, D.: The continuum random tree I. Ann. Probab. 19, 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  8. Angel, O., Schramm, O.: Uniform infinite planar triangulations. Commun. Math. Phys. 241, 191–213 (2003)

    Article  MathSciNet  Google Scholar 

  9. Baur, E., Miermont, G., Ray, G.: Classification of scaling limits of uniform quadrangulations with a boundary. Ann. Probab. 47, 3397–3477 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bettinelli, J.: Scaling limit of random planar quadrangulations with a boundary. Ann. Inst. H. Poincaré Probab. Stat. 51, 432–477 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bettinelli, J., Jacob, E., Miermont, G.: The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection. Electron. J. Probab. 19(74), 1–16 (2014)

    MATH  Google Scholar 

  12. Bettinelli, J., Miermont, G.: Compact Brownian surfaces I. Brownian disks. Probab. Theory Relat. Fields 167, 555–614 (2017)

    Article  MathSciNet  Google Scholar 

  13. Budzinski, T.: The hyperbolic Brownian plane. Probab. Theory Relat. Fields 171, 503–541 (2018)

    Article  MathSciNet  Google Scholar 

  14. Caraceni, A., Curien, N.: Geometry of the uniform infinite half-planar quadrangulation. Random Struct. Algorithms 52, 454–494 (2018)

    Article  MathSciNet  Google Scholar 

  15. Curien, N., Le Gall, J.-F.: The Brownian plane. J. Theor. Probab. 27, 1240–1291 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Curien, N., Le Gall, J.-F.: The hull process of the Brownian plane. Probab. Theory Relat. Fields 166, 187–231 (2016)

    Article  MathSciNet  Google Scholar 

  17. Curien, N., Ménard, L.: The skeleton of the UIPT, seen from infinity. Ann. H. Lebesgue 1, 87–125 (2018)

    Article  MathSciNet  Google Scholar 

  18. Curien, N., Miermont, G.: Uniform infinite planar quadrangulations with a boundary. Random Struct. Algorithms 47, 30–58 (2015)

    Article  MathSciNet  Google Scholar 

  19. Duquesne, T., Le Gall, J.-F.: Probabilistic and fractal aspects of Lévy trees. Probab. Theory Relat. Fields 131, 553–603 (2005)

    Article  Google Scholar 

  20. Gwynne, E., Miller, J.: Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov–Hausdorff–Prokhorov-uniform topology. Electron. J. Probab. 22(paper no 84), 47 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Gwynne, E., Miller, J.: Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk. Ann. Inst. Henri Poincaré Probab. Stat. 55, 1–60 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Kyprianou, A.E., Pardo, J.C.: Continuous-state branching processes and self-similarity. J. Appl. Probab. 45, 1140–1160 (2008)

    Article  MathSciNet  Google Scholar 

  23. Lambert, A.: Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Probab. 12, 420–446 (2007)

    Article  MathSciNet  Google Scholar 

  24. Le Gall, J.-F.: Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Boston (1999)

    Book  Google Scholar 

  25. Le Gall, J.-F.: Geodesics in large planar maps and in the Brownian map. Acta Math. 205, 287–360 (2010)

    Article  MathSciNet  Google Scholar 

  26. Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41, 2880–2960 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Le Gall, J.-F.: Bessel processes, the Brownian snake and super-Brownian motion. In: Séminaire de Probabilités XLVII—In Memoriam Marc Yor. Lecture Notes in Mathematics, vol. 2137, pp. 89–105. Springer (2015)

  28. Le Gall, J.-F.: Subordination of trees and the Brownian map. Probab. Theory Relat. Fields 171, 819–864 (2018)

    Article  MathSciNet  Google Scholar 

  29. Le Gall, J.-F.: Brownian disks and the Brownian snake. Ann. Inst. H. Poincaré Probab. Stat. 55, 237–313 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Le Gall, J.-F.: The Brownian disk viewed from a boundary point. Ann. Inst. H. Poincaré Probab. Stat. (to appear)

  31. Le Gall, J.-F., Miermont, G.: Scaling limits of random trees and planar maps. In: Probability and Statistical Physics in Two and More Dimensions. Clay Mathematics Proceedings, vol. 15, pp. 155–211. AMS-CMI (2012)

  32. Marzouk, C.: Scaling limits of random bipartite planar maps with a prescribed degree sequence. Random Struct. Algorithms 53, 448–503 (2018)

    Article  MathSciNet  Google Scholar 

  33. Marzouk, C.: Brownian limits of planar maps with a prescribed degree sequence. arXiv:1903.06138

  34. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210, 319–401 (2013)

    Article  MathSciNet  Google Scholar 

  35. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. arXiv:1605.03563

  36. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991)

    Book  Google Scholar 

  37. Riera, A.: Isoperimetric inequalities in the Brownian plane. arXiv:2103.14573

  38. Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. Lond. Math. Soc. Ser. 3(28), 738–768 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank an anomymous referee for his/her careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Le Gall.

Additional information

This paper is dedicated to the memory of Harry Kesten.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the ERC Advanced Grant 740943 GeoBrown

Appendix: Some Laplace transforms

Appendix: Some Laplace transforms

Recall the standard notation

$$\begin{aligned} \hbox {erfc}(x)=\frac{2}{\sqrt{\pi }}\int _x^\infty e^{-t^2}\,\text {d}t. \end{aligned}$$

Then the function \(\chi _1\) defined for \(x>0\) by

$$\begin{aligned} \chi _1(x)=\frac{1}{\sqrt{\pi }}x^{-1/2} - e^x\,\text {erfc}(\sqrt{x}) =\frac{1}{\sqrt{\pi }}\,e^x \int _{\sqrt{x}}^\infty \frac{1}{t^2}\,e^{-t^2}\,\text {d}t, \end{aligned}$$
(A.0)

satisfies, for every \(\lambda >0\),

$$\begin{aligned} \int _0^\infty \text {d}x\,e^{-\lambda x}\,\chi _1(x)= (1+\sqrt{\lambda })^{-1}. \end{aligned}$$
(A.1)

This is easily verified via an integration by parts which gives for \(\lambda >0\),

$$\begin{aligned} \int _0^\infty \text {erfc}(\sqrt{x})e^x\,e^{-\lambda x}\,\text {d}x = \frac{1}{\sqrt{\lambda }(1+\sqrt{\lambda })}. \end{aligned}$$

From the last two displays and an integration by parts, one checks that the function \(\chi _2=\chi _1*\chi _1\), which satisfies

$$\begin{aligned} \int _0^\infty \text {d}x\,e^{-\lambda x}\,\chi _2(x)= (1+\sqrt{\lambda })^{-2}, \end{aligned}$$
(A.2)

is given for \(x>0\) by

$$\begin{aligned} \chi _2(x)= e^x\text {erfc}(\sqrt{x})-2x\,\chi _1(x)= (2x+1)e^x\text {erfc}(\sqrt{x}) -\frac{2}{\sqrt{\pi }}x^{1/2}. \end{aligned}$$

Similar manipulations show that the function \(\chi _3=\chi _1*\chi _1*\chi _1\) satisfying

$$\begin{aligned} \int _0^\infty \text {d}x\,e^{-\lambda x}\,\chi _3(x)= (1+\sqrt{\lambda })^{-3}. \end{aligned}$$
(A.3)

is given by

$$\begin{aligned} \chi _3(x)=\frac{2}{\sqrt{\pi }}(x^{3/2} + x^{1/2}) - 2x(x+\frac{3}{2})\,e^x\,\hbox {erfc}(\sqrt{x}). \end{aligned}$$

We observe that \(\chi _1(x)>0\) for every \(x>0\) (this is obvious from (A.0)) and thus we have also \(\chi _3(x)>0\) for every \(x>0\). Finally, we note that

$$\begin{aligned} \int _0^{\infty } \frac{1-e^{-\lambda x}}{x}\,\chi _3(x)\,\text {d}x&= \int _0^\lambda \text {d}\mu \int _0^\infty e^{-\mu x}\,\chi _3(x)\,\text {d}x\nonumber \\&= \int _0^\lambda \text {d}\mu (1+\sqrt{\mu })^{-3} = (1+\lambda ^{-1/2})^{-2}. \end{aligned}$$
(A.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Gall, JF., Riera, A. Spine representations for non-compact models of random geometry. Probab. Theory Relat. Fields 181, 571–645 (2021). https://doi.org/10.1007/s00440-021-01069-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-021-01069-x

Mathematics Subject Classification

Navigation