Skip to main content

Advertisement

Log in

Mechanical characterization of 3D printed mimic of human artery affected by atherosclerotic plaque through numerical and experimental methods

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

This paper proposes a novel experimental investigation based on 3D printing to validate numerical models for biomechanics simulations. Soft elastomeric materials have been used in Polyjet multi-material 3D printer to mimicking arteries affected by atherosclerotic plaque. The nonlinear mechanical properties of five digital materials are characterized and used as an input for finite element (FE) modeling. Pressurized air is applied to the internal cavity of the printed model to reproduce the internal blood pressure in the artery. Digital Imaging Correlation is adopted to measure the displacement and deformation. A 1D linear higher-order FE model based on the Carrera Unified Formulation is compared to 3D nonlinear FE solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Balzani D, Brinkhues S, Holzapfel G (2012) Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput Methods Appl Mech Eng 213–216:139–151. https://doi.org/10.1016/j.cma.2011.11.015

    Article  MathSciNet  MATH  Google Scholar 

  • Bass L, Meisel NA, Williams CB (2016) Exploring variability of orientation and aging effects in material properties of multi-material jetting parts. Rapid Prototyp J 22:826–834

    Article  Google Scholar 

  • Biglino G, Verschueren P, Zegels R, Taylor AM, Schievano S (2013) Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J CardiovasC Mag Reson 15(1):2

    Article  Google Scholar 

  • Blanco D, Fernandez P, Noriega A (2014) Nonisotropic experimental characterization of the relaxation modulus for Polyjet manufactured parts. J Mater Res 29:1876–1882

    Article  Google Scholar 

  • Boyce M, Arruda E (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523

    Article  Google Scholar 

  • Carrera E, Petrolo M (2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47(3):537–556. https://doi.org/10.1007/s11012-011-9466-5

    Article  MathSciNet  MATH  Google Scholar 

  • Carrera E, Zappino E (2017) One-dimensional finite element formulation with node-dependent kinematics. Comput Struct 192:114–125. https://doi.org/10.1016/j.compstruc.2017.07.008

    Article  Google Scholar 

  • Carrera E, Maiarú M, Petrolo M (2012) Component-wise analysis of laminated anisotropic composites. Int J Solids Struct 49(13):1839–1851

    Article  Google Scholar 

  • Carrera E, Maiarú M, Petrolo M, Giunta G (2013) A refined 1d element for the structural analysis of single and multiple fiber/matrix cells. Compos Struct 96:455–468

    Article  Google Scholar 

  • Carrera E, Cinefra M, Petrolo M, Zappino E (2014a) Finite element analysis of structures through unified formulation. Wiley, Hoboken

    Book  Google Scholar 

  • Carrera E, Filippi M, Zappino E (2014b) Free vibration analysis of laminated beam by polynomial, trigonometric, exponential and zig-zag theories. J Compos Mater 48(19):2299–2316. https://doi.org/10.1177/0021998313497775

    Article  MATH  Google Scholar 

  • Carrera E, Guarnera D, Pagani A (2018) Static and free-vibration analyses of dental prosthesis and atherosclerotic human artery by refined finite element models. Biomech Model Mechanobiol 2:301–317. https://doi.org/10.1007/s10237-017-0961-z

    Article  Google Scholar 

  • Chai C, Speelman L, Oomens CWJ, Baaijens FPT (2014) Compressive mechanical properties of atherosclerotic plaques. Indentation test to characterise the local anisotropic behaviour. J Biomech 47(4):784–792

    Article  Google Scholar 

  • Cloonan A, Shahmirzadi D, Li RX, Doyle BJ, Konofagou EE, McGloughlin TM (2014) 3D-printed tissue-mimicking phantoms for medical imaging and computational validation applications. 3D printing and Additive Manufacturing 1(1):14–23

    Article  Google Scholar 

  • Dimas L, Bratzel GH, Eylon I, Buehler MJ (2013) Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Adv Func Mater 23(36):4629–4638

    Article  Google Scholar 

  • Dykstra D, Busink J, Ennis B, Coulais C (2019) Viscoelastic snapping metamaterials. J Appl Mech 86(11)

  • Hangge P, Pershad Y, Witting AA, Albadawi H, Oklu R (2018) Three-dimensional (3D) printing and its applications for aortic diseases. Cardiovas Diag Ther 8(Suppl 1):S19

    Article  Google Scholar 

  • Holzapfel G, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng 126(5):657–665

    Article  Google Scholar 

  • Jacobs S, Grunert R, Mohr FW, Falk V (2008) 3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovas Thoracic Surg 7(1):6–9

    Article  Google Scholar 

  • Karimi A, Navidbakhsh M, Faghihi S, Shojaei A, Hassani K (2013) A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Proce Inst Mech Eng Part H J Eng Med 227(2):148–161

    Article  Google Scholar 

  • Kim B, Lee SB, Lee J, Cho S, Park H, Yeom S, Park SH (2012) A comparison among neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int J Precis Eng Manuf 13(5):759–764

    Article  Google Scholar 

  • Kimura T, Morita A, Nishimura K, Aiyama H, Itoh H, Fukaya S, Sora S, Ochiai C (2009) Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery 65(4):719–726

    Article  Google Scholar 

  • Kiraly L, Tofeig M, Jha NK, Talo H (2016) Three-dimensional printed prototypes refine the anatomy of post-modified norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovas Thorac Surg 22(2):238–240

    Article  Google Scholar 

  • Kumar N, Rao V (2016) Hyperelastic Mooney-Rivlin model: determination and physical interpretation of material constants. Parameters 2(10):01

    Google Scholar 

  • Lin E, Li Y, Weaver JC, Ortiz C, Boyce MC (2014) Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces. J Mater Res 29(17):1867–1875

    Article  Google Scholar 

  • Maiarú M, Petrolo M, Carrera E (2017) Evaluation of energy and failure parameters in composite structures via a component-wise approach. Compos Part B Eng 108:53–64

    Article  Google Scholar 

  • Maragiannis P, Jackson M, Igo S, Schutt R, Connell P, Grande-Allen J, Barker C, Chang SM, Reardon M, Zoghbi W et al (2015) Replicating patient-specific severe aortic valve stenosis with functional 3D modeling clinical perspective. Circul Cardiovas Imag 8(10):e003626

    Google Scholar 

  • Mulvihill J, Walsh M (2013) On the mechanical behaviour of carotid artery plaques: the influence of curve-fitting experimental data on numerical model results. Biomech Model Mechanobiol 12(5):975–985

    Article  Google Scholar 

  • Nguyen K (2017) Past developments and future directions of 3D cardiac printing: a surgeon’s perspective. In: Rapid Prototyping in Cardiac Disease, Springer, pp 183–189

    Chapter  Google Scholar 

  • Pericevic I, Lally C, Toner D, Kelly DJ (2009) The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med Eng Phys 31(4):428–433

    Article  Google Scholar 

  • Philamore H, Rossiter J, Walters P, Winfield J, Ieropoulos I (2015) Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication. J Power Sour 289:91–99

    Article  Google Scholar 

  • Piccinini M, Berselli G, Zucchelli A, Vassura G (2009) Predicting the compliance of soft fingertips with differentiated layer design: A numerical and experimental investigation. In: 2009 International Conference on Advanced Robotics, IEEE, pp 1–6

  • Qi H, Joyce K, Boyce MC (2003) Durometer hardness and the stress-strain behavior of elastomeric materials. Rubber Chem Technol 76(2):419–435

    Article  Google Scholar 

  • Rajagopal V, Janardan R, Miyaoka R, Monga M, Sweet RM (2009) Modeling and simulation for flexible ureteroscopy. In: 24th Engineering and Urology Society annual meeting, Chicago, Journal of Endourology, pp 1035–1036

  • Speelman L, Akyildiz AC, Den Adel B, Wentzel JJ, Van der Steen AFW, Virmani R, Van der Weerd L, Jukema JW, Poelmann RE, Van Brummelen EH et al (2011) Initial stress in biomechanical models of atherosclerotic plaques. J Biomech 44(13):2376–2382

    Article  Google Scholar 

  • Varello A, Carrera E (2014) Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models. Smart Struct Syst 13(4):659–683

    Article  Google Scholar 

  • Winder R, Sun Z, Kelly B, Ellis PK, Hirst D (2002) Abdominal aortic aneurysm and stent graft phantom manufactured by medical rapid prototyping. J Med Eng Technol 26(2):75–78

    Article  Google Scholar 

  • Wong K, Thavornpattanapong P, Cheung S, Sun Z, Tu J (2012) Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovas Dis 12(1):7. https://doi.org/10.1186/1471-2261-12-7

    Article  Google Scholar 

  • Zhang P, Heyne M, To A (2015) Biomimetic staggered composites with highly enhanced energy dissipation: modeling, 3D printing, and testing. J Mech Phys Solids 83:285–300

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Alessandro Cassano and Nikhil Pimpalkar for assistance with the experiments set-up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Maiarù.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guarnera, D., Carrera, E., Hansen, C.J. et al. Mechanical characterization of 3D printed mimic of human artery affected by atherosclerotic plaque through numerical and experimental methods. Biomech Model Mechanobiol 20, 1969–1980 (2021). https://doi.org/10.1007/s10237-021-01487-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01487-9

Keywords

Navigation