Skip to main content
Log in

Hyperspectral Bathymetry Retrieval using a Newly Developed Normalized Algorithm in Shallow Water

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Shallow water bathymetry is highly significant to regional and national economic development. It is also fundamentally important to coastal benthic environments. Thus, numerous different types of algorithms have been explored to identify one that accurately determines shallow water depth. Among the algorithms that employ data from passive sensors, Ma Sheng’s algorithm, which uses the Pearson correlation coefficient (CC) and the similarity coefficient (SC), shows good performance. After analyzing the bathymetry retrieval theory and algorithms included in Ma Sheng’s model, we determined that \([\mathrm{ln}\left(nSC\right)-\mathrm{ln}\left(nCC\right)]\)/\([\mathrm{ln}\left(nSC\right)+\mathrm{l}\mathrm{n}(nCC)]\) has a good relationship with the field data. Based on that finding, we established a normalized algorithm for estimating shallow water depth from hyperspectral data. Finally, the Ma Sheng’s algorithm and our new, normalized, algorithm were compared through analysis of Hyperion satellite imagery against in situ, measured bathymetry over the coastal regions of Saipan and Landfall Islands. Bathymetry retrieved using our method showed a root-mean-square error of 1.937 for Saipan Island and 2.37 for Landfall Island, both of which are comparable to results from Ma Sheng’s method. Moreover, the validation results demonstrate that our method exhibits good performance and is an acceptable alternative algorithm for bathymetry retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alpers, W., & Hennings, I. (1984). A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. J Geophys Res-Oceans., 89(C6), 529–546.

    Article  Google Scholar 

  • Bailey-Brock, J. H. (1999). Ecology and biodiversity of coral reef polychaetes of guam and saipan, mariana islands. International Review of Hydrobiology, 84(2), 181–196.

    Google Scholar 

  • Botha, E. J., Brando, V. E., & Dekker, A. G. (2016). Effects of per-pixel variability on uncertainties in bathymetric retrievals from high-resolution satellite images. Remote Sens-Basel., 8(6), 459.

    Article  Google Scholar 

  • Calkoen, C. J., Hesselmans, G. H. F. M., Wensink, G. J., & Vogelzang, J. (2001). The bathymetry assessment system: Efficient depth mapping in shallow seas using radar images. International Journal of Remote Sensing, 22(15), 2973–2998.

    Article  Google Scholar 

  • Clarisse, L., Prata, F., Lacour, J. L., Hurtmans, D., Clerbaux, C., & Coheur, P. F. (2010). A correlation method for volcanic ash detection using hyperspectral infrared measurements. Geophysical Research Letters, 37(19), L19806.

    Article  Google Scholar 

  • Dekker, A. G., Phinn, S. R., Anstee, J., Bissett, P., Brando, V. E., Casey, B., Fearns, P., Hedley, J., Klonowski, W., & Lee, Z. P. (2011). Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in australian and caribbean coastal environments. Limnol Oceanogr-Meth., 9(9), 396–425.

    Article  Google Scholar 

  • Eugenio, F., Marcello, J., & Martin, J. (2015). High-resolution maps of bathymetry and benthic habitats in shallow-water environments using multispectral remote sensing imagery. Ieee T Geosci Remote., 53(7), 3539–3549.

    Article  Google Scholar 

  • Fan, K. G., Huang, W. G., Lin, H., Pan, J. Y., Fu, B., & Gu, Y. Z. (2011). Shallow water depth retrieval from space-borne sar imagery. Journal of Oceanography, 67(4), 405–413.

    Article  Google Scholar 

  • Gholamalifard, M., Kutser, T., Esmaili-Sari, A., Abkar, A. A., & Naimi, B. (2013). Remotely sensed empirical modeling of bathymetry in the southeastern caspian sea. Remote Sens-Basel., 5(6), 2746–2762.

    Article  Google Scholar 

  • Hamylton, S. M., Hedley, J. D., & Beaman, R. J. (2015). Derivation of high-resolution bathymetry from multispectral satellite imagery: A comparison of empirical and optimisation methods through geographical error analysis. Remote Sens-Basel., 7(12), 16257–16273.

    Article  Google Scholar 

  • Hedley, J. D., Harborne, A. R., & Mumby, P. J. (2005). Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos. International Journal of Remote Sensing, 26(10), 2107–2112.

    Article  Google Scholar 

  • Hochberg, E. J., Andrefouet, S., & Tyler, M. R. (2003). Sea surface correction of high spatial resolution ikonos images to improve bottom mapping in near-shore environments. Ieee T Geosci Remote., 41(7), 1724–1729.

    Article  Google Scholar 

  • Holden, H., & LeDrew, E. (2002). Measuring and modeling water column effects on hyperspectral reflectance in a coral reef environment. Remote Sensing of Environment, 81(2–3), 300–308.

    Article  Google Scholar 

  • Irish, J. L., & White, T. E. (1998). Coastal engineering applications of high-resolution lidar bathymetry. Coastal Engineering, 35(1–2), 47–71.

    Article  Google Scholar 

  • Jay, S., & Guillaume, M. (2014). A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data. Remote Sensing of Environment, 147(18), 121–132.

    Article  Google Scholar 

  • Jay, S., & Guillaume, M. (2016). Regularized estimation of bathymetry and water quality using hyperspectral remote sensing. International Journal of Remote Sensing, 37(2), 263–289.

    Article  Google Scholar 

  • Kutser, T., Vahtmae, E., & Praks, J. (2009). A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving nir signal. Remote Sensing of Environment, 113(10), 2267–2274.

    Article  Google Scholar 

  • Lee, Z., Carder, K. L., & Chen, R. F. (2001). Peacock TG Properties of the water column and bottom derived from airborne visible infrared imaging spectrometer (aviris) data. J Geophys Res-Oceans, 106(C6), 11639–11651.

    Article  Google Scholar 

  • Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1998). Hyperspectral remote sensing for shallow waters. A Semianalytical Model. Appl Optics., 37(27), 6329–6338.

    Google Scholar 

  • Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., & Patch, J. S. (1999). Hyperspectral remote sensing for shallow waters 2 Deriving bottom depths and water properties by optimization. Applied Optics, 38(18), 3831–3843.

    Article  Google Scholar 

  • Lee, Z., Casey, B., Arnone, R., Weidemann, A., Parsons, R., Montes, M. J., Gao, B. C., Goode, W., Davis, C. O., & Dye, J. (2007). Water and bottom properties of a coastal environment derived from hyperion data measured from the eo-1 spacecraft platform. Journal of Applied Remote Sensing, 1, 011502.

    Article  Google Scholar 

  • Liu, S., Gao, Y., Zheng, W. F., & Li, X. L. (2015). Performance of two neural network models in bathymetry. Remote Sens Lett., 6(4), 321–330.

    Article  Google Scholar 

  • Liu, Y., Deng, R., Li, J., Qin, Y., Xiong, L., Chen, Q., & Liu, X. (2018). Multispectral bathymetry via linear unmixing of the benthic reflectance. IEEE J-STARS., 11(11), 4349–4363.

    Google Scholar 

  • Lyons, M., Phinn, S., & Roelfsema, C. (2011). Integrating quickbird multi-spectral satellite and field data: Mapping bathymetry, seagrass cover, seagrass species and change in moreton bay, australia in 2004 and 2007. Remote Sens-Basel., 3(1), 42–64.

    Article  Google Scholar 

  • Lyzenga, D. R. (1978). Passive remote-sensing techniques for mapping water depth and bottom features. Applied Optics, 17(3), 379–383.

    Article  Google Scholar 

  • Lyzenga, D. R., Malinas, N. P., & Tanis, F. J. (2006). Multispectral bathymetry using a simple physically based algorithm. Ieee T Geosci Remote., 44(8), 2251–2259.

    Article  Google Scholar 

  • Ma, S., Tao, Z., Yang, X., Yu, Y., Zhou, X., & Li, Z. (2014). Bathymetry retrieval from hyperspectral remote sensing data in optical-shallow water. Ieee T Geosci Remote., 52(2), 1205–1212.

    Article  Google Scholar 

  • Pacheco, A., Horta, J., Loureiro, C., & Ferreira, O. (2015). Retrieval of nearshore bathymetry from landsat 8 images: A tool for coastal monitoring in shallow waters. Remote Sensing of Environment, 159, 102–116.

    Article  Google Scholar 

  • Polcyn FC, Sattinger IJ. (1969). Water depth determinations using remote sensing techniques, In: University of Michigan.Willow Run Laboratories. editors. Proceedings of the Sixth International Symposium on Remote Sensing of Environment; Oct 13–16; Ann Arbor (MI) . p 1017.

  • Sanchez-Carnero, N., Ojeda-Zujar, J., Rodriguez-Perez, D., & Marquez-Perez, J. (2014). Assessment of different models for bathymetry calculation using spot multispectral images in a high-turbidity area: The mouth of the guadiana estuary. International Journal of Remote Sensing, 35(2), 493–514.

    Article  Google Scholar 

  • Sandidge, J. C., & Holyer, R. J. (1998). Coastal bathymetry from hyperspectral observations of water radiance. Remote Sensing of Environment, 65(3), 341–352.

    Article  Google Scholar 

  • Shen, X., Jiang, L., & Li, Q. (2019). Retrieval of near-shore bathymetry from multispectral satellite images using generalized additive models. Ieee Geosci Remote S., 16(6), 922–926.

    Article  Google Scholar 

  • Stumpf, R. P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1), 547–556.

    Article  Google Scholar 

  • Varghese, S., & Manoj, R. V. (2017). Active channel systems in the west basin, andaman fore arc: Results from high-resolution bathymetry surveys and GIS analysis. Arabian Journal of Geosciences , 10, 227.

    Article  Google Scholar 

  • Wang, Y., Zhou, X., Li, C., Chen, Y., & Yang, L. (2020). Bathymetry model based on spectral and spatial multifeatures of remote sensing image. Ieee Geosci Remote S., 17(1), 37–41.

    Article  Google Scholar 

  • Xu, H. (2006). Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.

    Article  Google Scholar 

  • Yang, J., Zhang, J., & Meng, J. (2010). Underwater topography detection of Taiwan shoal with sar images. Chin J Oceanol Limn., 28(3), 636–642.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Global Change and Air-sea Interaction Project of State Oceanic Administration.

Funding

This study was supported by Global Change and Air-sea Interaction Project of State Oceanic Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongga Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

We believe that the findings of this study are relevant to the scope of your journal and will be of interest to its readership. We have approved the manuscript and agree with submission to Journal of the Indian Society of Remote Sensing.

Consent of Publishing

This manuscript has not been published elsewhere and is not under consideration by another journal. The manuscript has been carefully reviewed by an experienced editor whose first language is English and who specializes in editing papers written by scientists whose native language is not English.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cheng, P. & Huang, X. Hyperspectral Bathymetry Retrieval using a Newly Developed Normalized Algorithm in Shallow Water. J Indian Soc Remote Sens 49, 2425–2436 (2021). https://doi.org/10.1007/s12524-021-01390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01390-x

Keywords

Navigation