Skip to main content
Log in

Heterologous expression of Solanum tuberosum NAC1 gene confers enhanced tolerance to salt stress in transgenic Nicotiana benthamiana

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The plant-specific transcription factors NACs (NAM, ATAF1, 2, CUC), one major transcription factor family, play significant roles in various physiological processes including abiotic stresses. In our study, an NAC gene from potato (Solanum tuberosum L.) was cloned and named as StNAC1 for a high-sequence similarity to SlNAC1, a well-known tomato NAC gene regulating multiple stress responses and fruit ripening. StNAC1 gene was significantly induced under salt stress. Then, we constructed StNAC1-overexpressing transgenic Nicotiana benthamiana plants and obtained three homozygous transgenic lines. The phenotypic analysis results showed that StNAC1-overexpressing transgenic plants had not only higher seed germination and green leaf rates, but also accumulated less ROS and more proline than wide-type plants under salt stress, which resulted in improving transgenic plants salt tolerance. These suggested that StNAC1 gene might function as a positive regulator in plant response to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8

Similar content being viewed by others

References

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212

    Article  CAS  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Paul Bolwell G (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2013) Overexpression of StDREB1 transcription factor increases__tolerance to salt in transgenic potato plants. Mol Biotechnol 54:803–817

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Shen Z, Wu D, Xie X, Xu X, Lv L, Dai H, Chen J, Gan X (2019) Glutathione Peroxidase 1 Promotes NSCLC Resistance to Cisplatin via ROS-Induced Activation of PI3K/AKT Pathway. Biomed Res Int 2019:1–12

    Google Scholar 

  • Cheng Y-J, Kim M-D, Deng X-P, Kwak S-S, Chen W (2013) Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor. J Microbiol Biotechnol 23:1737–1746

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Zhang X, Zhao K, Zhou B, Jiang T (2020) Ectopic expression of a poplar gene NAC13 confers enhanced tolerance to salinity stress in transgenic Nicotiana tabacum. J Plant Res 133:727–737

    Article  PubMed  Google Scholar 

  • Christianson JL, Boutet E, Puri V, Chawla A, Czech MP (2010) Identification of the lipid droplet targeting domain of the Cidea protein. J Lipid Res 51:3455–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46:521–529

    Article  CAS  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Duval M, Hsieh T-F, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50:237–248

    Article  CAS  PubMed  Google Scholar 

  • Efimova MV, Mukhamatdinova EA, Kovtun IS, Kabil F, Medvedeva YV, Kuznetsov VV (2019) Jasmonic acid enhances the resistance of potato plants in vitro to salt stress. General Biology 488:149–152

    CAS  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Du M, Zhou Z, Wang S, Li T, Han J, Xu T, Yang G (2020a) An NAC transcription factor gene from Malus baccata, MbNAC29, increases cold and high salinity tolerance in Arabidopsis. Vitro Cellular & Developmental Biology - Plant 56:588–599

    Article  CAS  Google Scholar 

  • Han D, Du M, Zhou Z, Wang S, Li T, Han J, Xu T, Yang G (2020b) Overexpression of a Malus baccata NAC Transcription Factor Gene MbNAC25 Increases Cold and Salinity Tolerance in Arabidopsis. Int J Mol Sci 21:1198

    Article  CAS  PubMed Central  Google Scholar 

  • Hao Y-J, Wei W, Song Q-X, Chen H-W, Zhang Y-Q, Wang F, Zou H-F, Lei G, Tian A-G, Zhang W-K, Ma B, Zhang J-S, Chen S-Y (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7:1–11

    Article  Google Scholar 

  • He Z, Li Z, Lu H, Huo L, Wang Z, Wang Y, Ji X (2019) The NAC protein from Tamarix hispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability. Plants 8:221

    Article  CAS  PubMed Central  Google Scholar 

  • Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore JD, Zhang P, Jackson A, Cooke E, Bewicke-Copley F, Mead A, Beynon J, Wild DL, Denby KJ, Ott S, Buchanan-Wollaston V (2013) A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J 75:26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 cofering cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaarsma R, De Boer AH (2018) Salinity tolerance of two potato cultivars (solanum tuberosum) correlates with differences in vacuolar transport activity. Front Plant Sci 9:737

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaarsma R, Vries RSMd, Boer AHd (2013) Effect of Salt Stress on Growth, Na+ Accumulation and Proline Metabolism in Potato (Solanum tuberosum) Cultivars. PLoS ONE 8:e60183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MK, Skriver K (2014) NAC transcription factor gene regulatory and protein-protein interaction networks in plant stress responses and senescence. IUBMB Life 66:156–166

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Lindemose S, de Masi F, Reimer JJ, Nielsen M, Perera V, Workman CT, Turck F, Grant MR, Mundy J, Petersen M, Skriver K (2013) ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio 3:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano H-Y (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Kim S-G, Lee A-K, Yoon H-K, Park C-M (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J 55:77–88

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Shin R, Schachtman DP (2009) A nuclear factor regulates abscisic acid responses in arabidopsis. Plant Physiol 151:1433–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. Physiol Biochem Genet Persp 10:270–296

    Google Scholar 

  • Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z (2020) GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol 105:333–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1987) ChlorolShylls and carotenoids_ pigments of__photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Ying S, Zhang D-F, Shi Y-S, Song Y-C, Wang T-Y, Li Y (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep 31:1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao H, Yu L, Han R, Li Z, Liu H (2016) ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiol Biochem 105:55–66

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F (2017) A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol 174:1747–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao C, Ding J, Zhang B, Xi D, Ming F (2018) OsNAC2 positively affects salt-induced cell death and binds to the OsAP37 and OsCOX11 promoters. Plant J 94:454–468

    Article  CAS  PubMed  Google Scholar 

  • Marques DN, Reis SPd, de Souza CRB (2017) Plant NAC transcription factors responsive to abiotic stresses. Plant Gene 11:170–179

    Article  CAS  Google Scholar 

  • Melo BP, Fraga OT, Silva JCF, Ferreira DO, Brustolini OJB, Carpinetti PA, Machado JPB, Reis PAB, Fontes EPB (2018) Revisiting the soybean GmNAC superfamily. Front Plant Sci 9:1864

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizzotti C, Rotasperti L, Moretto M, Tadini L, Resentini F, Galliani BM, Galbiati M, Engelen K, Pesaresi P, Masiero S (2018) Time-course transcriptome analysis of arabidopsis siliques discloses genes essential for fruit development and maturation. Plant Physiol 178:1249–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Tran L-SP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta (BBA)-Gene Regul Mech 1819(2):97–103

    Article  CAS  Google Scholar 

  • Nguyen KH, Mostofa MG, Li W, Van Ha C, Watanabe Y, Le DT, Thao NP, Tran L-SP (2018) The soybean transcription factor GmNAC085 enhances drought tolerance in Arabidopsis. Environ Exp Bot 151:12–20

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    Article  CAS  PubMed  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Koji Suzuki KK, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, Urban L, Lachaal M (2014) Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem 83:126–133

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Zhao Y, Li X, Wu M, Chai W, Sheng L, Wang Y, Dong Q, Jiang H, Cheng B (2015) Genomewide identification, classification and analysis of NAC type gene family in maize. Genetics 94:377–390

    CAS  Google Scholar 

  • Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12:1917–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Lv B, Luo L, He J, Mao C, Xi D, Ming F (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7(1):1–16

    Article  Google Scholar 

  • Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20:403–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  • Wang K, Zhong M, Wu Y-h, Bai Z-y, Liang Q-y, Liu Q-l, Pan Y-z, Zhang L, Jiang B-b, Jia Y, Liu G-l (2017) Overexpression of a chrysanthemum transcription factor gene DgNAC1 improves the salinity tolerance in chrysanthemum. Plant Cell Rep 36:571–581

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua N-H (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.pdf>. Genes Dev 14:3024–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, He Q, Li S, Tian Z (2014) Molecular characterization of StNAC2 in potato and its overexpression confers drought and salt tolerance. Acta Physiol Plant 36:1841–1851

    Article  CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr Plant Biol 60:796–804

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Deng C, Ouyang B, Ye Z (2011) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38:857–863

    Article  CAS  PubMed  Google Scholar 

  • Yoon Y, Seo DH, Shin H, Kim HJ, Kim CM, Jang G (2020) The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. Agronomy 10:788

    Article  CAS  Google Scholar 

  • Yu S, Huang A, Li J, Gao L, Feng Y, Pemberton E, Chen C (2018) OsNAC45 plays complex roles by mediating POD activity and the expression of development-related genes under various abiotic stresses in rice root. Plant Growth Regul 84:519–531

    Article  CAS  Google Scholar 

  • Zhang X, Cheng Z, Zhao K, Yao W, Sun X, Jiang T, Zhou B (2019) Functional characterization of poplar NAC13 gene in salt tolerance. Plant Sci 281:1–8

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Ye M, Wang R, Wang D, Chen Q (2020) Systematic identification and functional analysis of potato (Solanum tuberosum L.) bZIP transcription factors and overexpression of potato bZIP transcription factor StbZIP-65 enhances salt tolerance. Int J Biol Macromol 161:155–167

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Qian C, Li R, Zhou S, Zhang R, Xiao J, Wang X, Zhang S, Xing L, Cao A (2018) TaNAC6s are involved in the basal and broad-spectrum resistance to powdery mildew in wheat. Plant Sci 277:218–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

WH and BZ designed research. LY conducted experiments. WH and YZ wrote the manuscript. YZ and LY performed in data analysis. All authors read and approved the manuscript. This work was supported by Sichuan Province Science and Technology Support Program (CN) (2020YFH0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaocheng Yang or Weizao Huang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7165 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Zhuang, Y., Gu, Y. et al. Heterologous expression of Solanum tuberosum NAC1 gene confers enhanced tolerance to salt stress in transgenic Nicotiana benthamiana. J. Plant Biol. 64, 531–542 (2021). https://doi.org/10.1007/s12374-021-09327-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-021-09327-0

Keywords

Navigation