Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neutrophils in cancer: heterogeneous and multifaceted

Abstract

Neutrophils are the most abundant myeloid cells in human blood and are emerging as important regulators of cancer. However, their functional importance has often been overlooked on the basis that they are short-lived, terminally differentiated and non-proliferative. Recent studies of their prominent roles in cancer have led to a paradigm shift in our appreciation of neutrophil functional diversity. This Review describes how neutrophil diversification, which in some contexts can lead to opposing functions, is generated within the tumour microenvironment as well as systemically. We compare neutrophil heterogeneity in cancer and in other pathophysiological contexts to provide an updated overview of our current knowledge of the functions of neutrophils in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neutrophil development in the bone marrow.
Fig. 2: Neutrophil effects on tumour initiation and growth.
Fig. 3: Neutrophil perturbations during metastatic progression.
Fig. 4: Neutrophil engagements during metastatic progression.

Similar content being viewed by others

References

  1. Summers, C. et al. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lahoz-Beneytez, J. et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood 127, 3431–3438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pillay, J. et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116, 625–627 (2010).

    Article  CAS  Google Scholar 

  4. Buckley, C. D. et al. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J. Leuk. Biol. 79, 303–311 (2005).

    Article  Google Scholar 

  5. Colom, B. et al. Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity 42, 1075–1086 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017). This work shows that neutrophils infiltrate sterile hepatic injury and support new vascular regrowth before re-entering the circulation and journeying via the lungs to the bone marrow, where they are cleared.

    Article  CAS  PubMed  Google Scholar 

  7. Hampton, H. R., Bailey, J., Tomura, M., Brink, R. & Chtanova, T. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat. Commun. 6, 7139 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Naranbhai, V. et al. Genomic modulators of gene expression in human neutrophils. Nat. Commun. 6, 7545 (2015).

    Article  PubMed  Google Scholar 

  9. Lakschevitz, F. S., Visser, M. B., Sun, C. & Glogauer, M. Neutrophil transcriptional profile changes during transit from bone marrow to sites of inflammation. Cell. Mol. Immunol. 12, 53–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Becher, B. et al. High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 15, 1181–1189 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Pizza, F. X., Peterson, J. M., Baas, J. H. & Koh, T. J. Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J. Physiol. 562, 899–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Toumi, H., F’guyer, S. & Best, T. M. The role of neutrophils in injury and repair following muscle stretch. J. Anat. 208, 459–470 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, J. Neutrophils in tissue injury and repair. Cell Tissue Res. 371, 531–539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaul, M. E. & Fridlender, Z. G. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 14, 1–20 (2019).

    Google Scholar 

  15. Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Ng, L. G., Ostuni, R. & Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19, 1–11 (2019).

    Article  Google Scholar 

  17. Manz, M. G., Miyamoto, T., Akashi, K. & Weissman, I. L. Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl Acad. Sci. USA 99, 11872–11877 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The neutrophil life cycle. Trends Immunol. 40, 584–597 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Cowland, J. B. & Borregaard, N. Granulopoiesis and granules of human neutrophils. Immunol. Rev. 273, 11–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Mori, Y. et al. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J. Exp. Med. 206, 183–193 (2008).

    Article  PubMed  Google Scholar 

  21. Yáñez, A., Ng, M. Y., Hassanzadeh-Kiabi, N. & Goodridge, H. S. IRF8 acts in lineage-committed rather than oligopotent progenitors to control neutrophil vs monocyte production. Blood 125, 1452–1459 (2015).

    Article  PubMed  Google Scholar 

  22. Drissen, R., Thongjuea, S., Theilgaard-Mönch, K. & Nerlov, C. Identification of two distinct pathways of human myelopoiesis. Sci. Immunol. 4, eaau7148 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Drissen, R. et al. Distinct myeloid progenitor–differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17, 666–676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mori, Y., Chen, J. Y., Pluvinage, J. V., Seita, J. & Weissman, I. L. Prospective isolation of human erythroid lineage-committed progenitors. Proc. Natl Acad. Sci. USA 112, 9638–9643 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hettinger, J. et al. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol. 14, 821–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Kawamura, S. et al. Identification of a human clonogenic progenitor with strict monocyte differentiation potential: a counterpart of mouse cMoPs. Immunity 46, 835–848.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Qi, X. et al. Antagonistic regulation by the transcription factors C/EBPα and MITF specifies basophil and mast cell fates. Immunity 39, 97–110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arinobu, Y. et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc. Natl Acad. Sci. USA 102, 18105 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, J. Q., Biedermann, B., Nitschke, L. & Crocker, P. R. The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur. J. Immunol. 34, 1175–1184 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535–1548.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537, 698–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, Y. P. et al. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 24, 2329–2341.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1–37 (2020).

    Article  Google Scholar 

  35. Dinh, H. Q. et al. Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow. Immunity 53, 319–334.e6 (2020). This work defines the earliest unipotent neutrophil progenitor in human bone marrow and shows its presence in human tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kwok, I. et al. Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 53, 303–318.e5 (2020). This study defines the earliest unipotent neutrophil progenitor in mice and nicely shows the trajectory of neutrophil differentiation.

    Article  CAS  PubMed  Google Scholar 

  37. Fiedler, K. & Brunner, C. The role of transcription factors in the guidance of granulopoiesis. Am. J. Blood Res. 2, 57–65 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, M.-H. et al. A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis. Sci. Rep. 7, 39804 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Satake, S. et al. C/EBPβ is involved in the amplification of early granulocyte precursors during candidemia-induced ‘emergency’ granulopoiesis. J. Immunol. 189, 4546 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Sturge, C. R., Burger, E., Raetz, M., Hooper, L. V. & Yarovinsky, F. Cutting edge: Developmental regulation of IFN-γ production by mouse neutrophil precursor cells. J. Immunol. 195, 36 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Freud, A. G., Mundy-Bosse, B. L., Yu, J. & Caligiuri, M. A. The broad spectrum of human natural killer cell diversity. Immunity 47, 820–833 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pellicci, D. G. & Uldrich, A. P. Unappreciated diversity within the pool of CD1d-restricted T cells. Sem. Cell Dev. Biol. 84, 42–47 (2018).

    Article  CAS  Google Scholar 

  43. Lieschke, G. J. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, F., Wu, H. Y., Wesselschmidt, R., Kornaga, T. & Link, D. C. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5, 491–501 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Sagiv, J. Y. et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 10, 562–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, Y. P. et al. CyTOF reveals phenotypically-distinct human blood neutrophil populations differentially correlated with melanoma stage. J. Immunother. Cancer 8, e000473 (2020). This study defines neutrophil heterogeneity in human cancer using high-dimensional methods.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Margraf, A., Ley, K. & Zarbock, A. Neutrophil recruitment: from model systems to tissue-specific patterns. Trends Immunol. 40, 613–634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020). This elegant work tracks the fates of neutrophils, shows their variable lifetimes across multiple tissues and identifies diverse neutrophil states linked to non-canonical functions such as vascular repair.

    Article  CAS  PubMed  Google Scholar 

  49. Puga, I. et al. B cell–helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13, 170–180 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Adrover, J. M. et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity 50, 390–402.e10 (2019). This is an outstanding study of how neutrophil functions are regulated by the circadian clock.

    Article  CAS  PubMed  Google Scholar 

  51. Aroca-Crevillen, A., Adrover, J. M. & Hidalgo, A. Circadian features of neutrophil biology. Front. Immunol. 11, 459–459 (2020).

    Article  Google Scholar 

  52. Adrover, J. M., Nicolás-Ávila, J. A. & Hidalgo, A. Aging: a temporal dimension for neutrophils. Trends Immunol. 37, 334–345 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Adrover, J. M. et al. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat. Immunol. 21, 135–144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, D. et al. Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yan, H., Baldridge, M. T. & King, K. Y. Hematopoiesis and the bacterial microbiome. Blood 132, 559–564 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Casanova-Acebes, M. et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J. Exp. Med. 215, 2778–2795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Drummond, R. A. et al. CARD9+ microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nat. Immunol. 20, 1–17 (2019).

    Article  Google Scholar 

  58. Singh, S. et al. Loss of ELF5-FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling. Nat. Cell Biol. 22, 591–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019). This is a great resource of high-dimensional analysis of human and mouse myeloid cells in lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nat. Rev. Cancer 538, 260–264 (2016).

    CAS  Google Scholar 

  61. Zhu, L. et al. Multi-organ mapping of cancer risk. Cell 166, 1132–1146.e7 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Knaapen, A. M. et al. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic. Biol. Med. 27, 234–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Canli, O. et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32, 869–883.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Wculek, S. K., Bridgeman, V. L., Peakman, F. & Malanchi, I. Early neutrophil responses to chemical carcinogenesis shape long-term lung cancer susceptibility. iScience 23, 101277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Butin-Israeli, V. et al. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. J. Clin. Invest. 129, 712–726 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Antonio, N. et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 34, 2219–2236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Houghton, A. M. et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 16, 219–223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Di Mitri, D. et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515, 134–137 (2014).

    Article  PubMed  Google Scholar 

  70. Giese, M. A., Hind, L. E. & Huttenlocher, A. Neutrophil plasticity in the tumor microenvironment. Blood 133, 2159–2167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cristinziano, L. et al. Anaplastic thyroid cancer cells induce the release of mitochondrial extracellular DNA traps by viable neutrophils. J. Immunol. 204, 1362–1372 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Jorch, S. K. & Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23, 279–287 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Kargl, J. et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat. Commun. 8, 1–11 (2017).

    Article  Google Scholar 

  75. Mollaoglu, G. et al. The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the tumor immune microenvironment. Immunity 49, 764–779.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Faget, J. et al. Neutrophils and snail orchestrate the establishment of a pro-tumor microenvironment in lung cancer. Cell Rep. 21, 3190–3204 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56.e6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 1–13 (2016).

    Article  Google Scholar 

  79. Caetano, M. S. et al. Sex specific function of epithelial STAT3 signaling in pathogenesis of K-ras mutant lung cancer. Nat. Commun. 9, 1–11 (2018).

    Article  CAS  Google Scholar 

  80. Bayik, D. et al. Myeloid-derived suppressor cell subsets drive glioblastoma growth in a sex-specific manner. Cancer Discov. 10, 1210–1225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Jackstadt, R. et al. Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36, 319–336.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. He, G. et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 34, 141 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang, T.-T. et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut 66, 1900–1911 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, W. et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol. Res. 7, 1497–1510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Teijeira, Á. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52, 856–871.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, Y. et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J. Exp. Med. 217, e20190354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Miller-Ocuin, J. L. et al. DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth. OncoImmunol. 8, e1605822 (2019).

    Article  Google Scholar 

  90. Talmadge, J. E. & Gabrilovich, D. I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 13, 739–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jamieson, T. et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J. Clin. Invest. 122, 3127–3144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Katoh, H. et al. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24, 631–644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Triner, D. et al. Neutrophils restrict tumor-associated microbiota to reduce growth and invasion of colon tumors in mice. Gastroenterol. 156, 1467–1482 (2019).

    Article  Google Scholar 

  94. Dmitrieva-Posocco, O. et al. Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50, 166–180.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin, C. et al. Commensal microbiota promote lung cancer development via gammadelta T cells. Cell 176, 1–33 (2019).

    Article  Google Scholar 

  96. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, D. & Frenette, P. S. Cross talk between neutrophils and the microbiota. Blood 133, 2168–2177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Koga, Y., Matsuzaki, A., Suminoe, A., Hattori, H. & Hara, T. Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): a novel mechanism of antitumor effect by neutrophils. Cancer Res. 64, 1037–1043 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Blaisdell, A. et al. Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells. Cancer Cell 28, 785–799 (2015). This work shows novel hypoxia-induced tumoricidal activity of neutrophils during uterine carcinogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mahiddine, K. et al. Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils. J. Clin. Invest. 130, 389–403 (2020). This article shows that a reduction of hypoxia increases tumoricidal potential of neutrophils during uterine carcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  101. Finisguerra, V. et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature 522, 349–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Matlung, H. L. et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 23, 3946–3959.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Ponzetta, A. et al. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell 178, 346–360.e24 (2019). This work describes a novel function of neutrophil-mediated anticancer immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Singhal, S. et al. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30, 120–135 (2016). This study provides the first evidence of neutrophil–antigen presenting cell hybrid cells in lung cancer with antitumour T cell stimulatory functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Beauvillain, C. et al. Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110, 2965–2973 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Fites, J. S. et al. An unappreciated role for neutrophil-DC hybrids in immunity to invasive fungal infections. PLoS Pathog. 14, e1007073 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tillack, K., Breiden, P., Martin, R. & Sospedra, M. T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J. Immunol. 188, 3150–3159 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Scapini, P. & Cassatella, M. A. Social networking of human neutrophils within the immune system. Blood 124, 710–719 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Keeley, T., Costanzo-Garvey, D. L. & Cook, L. M. Unmasking the many faces of tumor-associated neutrophils and macrophages: considerations for targeting innate immune cells in cancer. Trends Cancer 5, 789–798 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081 (2017). This work shows that lung cancer-released circulating factors stimulate osteoblasts to mobilize Siglec-Fhigh neutrophils, which home to the lungs and support cancer growth.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Nishida, J. et al. Epigenetic remodelling shapes inflammatory renal cancer and neutrophil-dependent metastasis. Nat. Cell Biol. 22, 1–31 (2020).

    Article  Google Scholar 

  112. Casbon, A.-J. et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc. Natl Acad. Sci. USA 112, E566–E575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Manz, M. G. & Boettcher, S. Emergency granulopoiesis. Nat. Rev. Immunol. 14, 302–314 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Rice, C. M. et al. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat. Commun. 9, 1–13 (2018).

    Article  CAS  Google Scholar 

  115. Yang, X. D. et al. Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nat. Med. 17, 1–11 (2019).

    Google Scholar 

  116. McCoach, C. E., Rogers, J. G., Dwyre, D. M. & Jonas, B. A. Paraneoplastic leukemoid reaction as a marker of tumor progression in non-small cell lung cancer. Cancer Treat. Commun. 4, 15–18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Johns, J. L. & Christopher, M. M. Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet. Pathol. 49, 508–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Bao, Y. et al. Extramedullary hematopoiesis secondary to malignant solid tumors: a case report and literature review. Cancer Manag. Res. 10, 1461–1470 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Benevides, L. et al. IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res. 75, 3788–3799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 1–26 (2019). This work describes a link between p53 loss in breast cancer and mobilization of KIT+ neutrophils.

    Article  Google Scholar 

  122. Basu, S. et al. ‘Emergency’ granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95, 3725–3733 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Basu, S., Dunn, A. & Ward, A. G-CSF: function and modes of action (review). Int. J. Mol. Med. 10, 3–10 (2002).

    CAS  PubMed  Google Scholar 

  124. Strauss, L. et al. RORC1 regulates tumor-promoting “emergency” granulo-monocytopoiesis. Cancer Cell 28, 253–269 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Andzinski, L. et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer 138, 1982–1993 (2015).

    Article  PubMed  Google Scholar 

  127. Wu, C.-F. et al. The lack of type I interferon induces neutrophil-mediated pre-metastatic niche formation in the mouse lung. Int. J. Cancer 137, 837–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Rocha, B. C. et al. Type I interferon transcriptional signature in neutrophils and low-density granulocytes are associated with tissue damage in malaria. Cell Rep. 13, 2829–2841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Massara, M. et al. ACKR2 in hematopoietic precursors as a checkpoint of neutrophil release and anti-metastatic activity. Nat. Commun. 9, 1–11 (2018).

    Article  CAS  Google Scholar 

  130. Kumar, S. & Dikshit, M. Metabolic insight of neutrophils in health and disease. Front. Immunol. 10, 2099 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ombrato, L. et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature 572, 603–608 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hsu, B. E. et al. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep. 27, 3902–3915.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Riffelmacher, T. et al. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity 47, 466–480.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 1–21 (2019). This work identifies a role for FATP2 in mediating neutrophil immunosuppressive activity via synthesis of prostaglandin E2.

    Article  Google Scholar 

  135. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 17, 413–417 (2015).

    Article  Google Scholar 

  136. Bald, T. et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507, 109–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 1–28 (2019). This work shows that neutrophils associate with disseminating cancer cells and support their proliferative programme while in the circulation.

    Article  Google Scholar 

  138. Cox, T. R. et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721–1732 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Murgai, M. et al. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat. Med. 23, 1176–1190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kaplan, R. N., Psaila, B. & Lyden, D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev. 25, 521–529 (2006).

    Article  PubMed  Google Scholar 

  142. Granot, Z. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Spiegel, A. et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov. 6, 630–649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, Y. et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell 30, 243–256 (2016).

    Article  PubMed  Google Scholar 

  147. Lim, K. et al. Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349, 4352–4352 (2015).

    Article  Google Scholar 

  148. Li, P. et al. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat. Immunol. 21, 1444–1455 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl Med. 8, 361ra138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lee, W. et al. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J. Exp. Med. 216, 176–194 (2018).

    Article  PubMed  Google Scholar 

  151. Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583, 1–30 (2020). This work identifies the transmembrane protein CCDC25 as a NET-DNA receptor on cancer cells mediating NET-dependent metastasis.

    Article  Google Scholar 

  152. Rayes, El,T. et al. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc. Natl Acad. Sci. USA 112, 16000–16005 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Castaño, Z. et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat. Cell Biol. 20, 1–21 (2018).

    Article  Google Scholar 

  155. del Pozo Martin, Y. et al. Mesenchymal cancer cell-stroma crosstalk promotes niche activation, epithelial reversion, and metastatic colonization. Cell Rep. 22, 2456–2469 (2015).

    Article  Google Scholar 

  156. Li, Sen et al. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J. Exp. Clin. Cancer Res. 38, 1–13 (2019).

    Article  Google Scholar 

  157. Li, P. et al. Dual roles of neutrophils in metastatic colonization are governed by the host NK cell status. Nat. Commun. 11, 4387 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ogura, K. et al. NK cells control tumor-promoting function of neutrophils in mice. Cancer Immunol. Res. 6, 348–357 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Ueda, R. et al. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients. Cancer Med. 5, 49–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Gershkovitz, M. et al. TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Res. 78, 2680–2690 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Gershkovitz, M. et al. Microenvironmental cues determine tumor cell susceptibility to neutrophil cytotoxicity. Cancer Res. 78, 5050–5059 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Gershkovitz, M., Fainsod-Levi, T., Zelter, T., Sionov, R. V. & Granot, Z. TRPM2 modulates neutrophil attraction to murine tumor cells by regulating CXCL2 expression. Cancer Immunol. Immunother. 68, 33–43 (2019).

    Article  PubMed  Google Scholar 

  163. Guglietta, S. et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat. Commun. 7, 1–14 (2019).

    Google Scholar 

  164. Cools-Lartigue, J. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 123, 3446–3458 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  165. Krall, J. A. et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl Med. 10, eaan3464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. O’Connor, R. Í., Kiely, P. A., & Dunne, C. P. The relationship between post-surgery infection and breast cancer recurrence. The Journal of Hospital Infection 106, 522–535 (2020)

    Article  CAS  PubMed  Google Scholar 

  167. De Cock, J. M. et al. Inflammation triggers zeb1-dependent escape from tumor latency. Cancer Res. 76, 6778–6784 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Quail, D. F. et al. Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF. Nat. Cell Biol. 19, 974–987 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. McDowell, S. A. C. et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat. Cancer 2, 545–562 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Fainsod-Levi, T. et al. Hyperglycemia impairs neutrophil mobilization leading to enhanced metastatic seeding. Cell Rep. 21, 2384–2392 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Wagner, J. et al. A Single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177, 1330–1345.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kargl, J. et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight 4, 129 (2019).

    Article  Google Scholar 

  173. Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kim, I. S. et al. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol. 21, 1113–1126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Glodde, N. et al. Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity 47, 789–802.e9 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ijichi, H. et al. Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J. Clin. Invest. 121, 4106–4117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhou, Z. et al. A C-X-C chemokine receptor type 2-dominated cross-talk between tumor cells and macrophages drives gastric cancer metastasis. Clin. Cancer Res. 25, 3317–3328 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Granot, Z. Neutrophils as a therapeutic target in cancer. Front. Immunol. 10, 431–436 (2019).

    Article  Google Scholar 

  183. Muench, D. E. et al. Mouse models of neutropenia reveal progenitor-stage-specific defects. Nature 582, 109–114 (2020). This study uses cutting-edge methods to illustrate the importance of the transcription factor GFI1 during various stages of neutrophil development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pillay, J. et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J. Clin. Invest. 122, 327–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Mathias, B. et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann. Surg. 265, 827–834 (2017).

    Article  PubMed  Google Scholar 

  186. Huang, X. et al. Neutrophils regulate humoral autoimmunity by restricting interferon-g production via the generation of reactive oxygen species. Cell Rep. 12, 1120–1132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Araujo (La Jolla Institute for Immunology (LJI)) for helpful edits, E. Nolan (The Francis Crick Institute) for critically reading the manuscript and H. Q. Dinh (University of Wisconsin-Madison) and M. A. Meyer (LJI) for helpful discussion of neutrophil developmental trajectories. This work was supported in part by the US National Institutes for Health (P01HL152958, P01HL136275 and U01CA224766 to C.C.H.), and by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001112), the UK Medical Research Council (FC001112) and the Wellcome Trust (FC001112), and by a European Research Council grant (CoG-H2020-725492 to I.M).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Catherine C. Hedrick or Ilaria Malanchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks Z. Fridlender, A. Hidalgo and other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedrick, C.C., Malanchi, I. Neutrophils in cancer: heterogeneous and multifaceted. Nat Rev Immunol 22, 173–187 (2022). https://doi.org/10.1038/s41577-021-00571-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00571-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer