Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 29, 2021

Intermetallic phases in the Sc–Ir–In system – synthesis and structure of Sc1.024Ir2In0.976 and Sc3Ir1.467In4

  • Nataliya L. Gulay , Yaroslav M. Kalychak and Rainer Pöttgen EMAIL logo

Abstract

The intermetallic scandium compounds Sc1.024Ir2In0.976 and Sc3Ir1.467In4 were synthesized by reactions of the elements in sealed tantalum ampoules at high temperature followed by annealing for crystal growth. Both structures were refined from single-crystal X-ray diffractometer data: MnCu2Al type, Fm3m, a = 639.97(19) pm, wR2 = 0.0376, 41 F2 values, seven variables for Sc1.024Ir2In0.976 and P6, a = 769.99(5), c = 684.71(4) pm, wR2 = 0.0371, 967 F2 values, 33 variables for Sc3Ir1.467In4. Sc1.024Ir2In0.976 is a new Heusler phase with a small homogeneity range due to Sc/In and In/Sc mixing. The structure of Sc3Ir1.467In4 is closely related to that of Sc3Rh1.594In4 and belongs to the large family of ZrNiAl superstructures. The striking structural motif is the ordered stacking of empty In6 and filled Ir@In6 prisms with Ir–In distances of 269 pm.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. J. Kösters for the single-crystal data collection.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. GschneidnerJr.K. A. In Scandium, Its Occurrence, Chemistry, Physics, Metallurgy, Biology and Technology; Horowitz, C. T., Ed. Academic Press: London, 1978; pp. 152–332.Search in Google Scholar

2. Kotur, B. Y. Croatica Chim. Acta 1998, 71, 635–658; https://doi.org/10.1515/9783486794601-019.Search in Google Scholar

3. Kotur, B. Y., Gratz, E. Scandium alloy systems and intermetallics. In Handbook of the Physics and Chemistry of Rare Earths; Gschneidner Jr, K. A., Eyring, L., Eds. Elsevier: Amsterdam, 1999; pp. 339–533. chapter 175.10.1016/S0168-1273(99)27006-7Search in Google Scholar

4. Eckert, H., Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232–2243; https://doi.org/10.1002/zaac.201000197.Search in Google Scholar

5. Gulay, N. L., Hoffmann, R.-D., Zaremba, V. I., Kalychak, Y. M., Pöttgen, R. Z. Kristallogr. 2020, 235, 417–422; https://doi.org/10.1515/zkri-2020-0032.Search in Google Scholar

6. Gulay, N. L., Hoffmann, R.-D., Kösters, J., Kalychak, Y. M., Seidel, S., Pöttgen, R. Z. Kristallogr. 2021, 236, 81–91; https://doi.org/10.1515/zkri-2021-2007.Search in Google Scholar

7. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2020, 75b, 799–803; https://doi.org/10.1515/znb-2020-0104.Search in Google Scholar

8. Pöttgen, R., Dronskowski, R. Z. Anorg. Allg. Chem. 1996, 622, 355–360; https://doi.org/10.1002/zaac.19966220101.Search in Google Scholar

9. Gulay, N. L., Tyvanchuk, Y. B., Kalychak, Y. M., Kaczorowski, D. J. Alloys Compd. 2018, 731, 222–228; https://doi.org/10.1016/j.jallcom.2017.10.023.Search in Google Scholar

10. Gulay, N. L., Kalychak, Y. M., Reimann, M. K., Paulsen, C., Kösters, J., Pöttgen, R. Monatsh. Chem. 2020, 151, 1673–1679; https://doi.org/10.1007/s00706-020-02701-7.Search in Google Scholar

11. Gulay, N. L., Tyvanchuk, Y. B., Daszkiewicz, M., Kaczorowski, D., Kalychak, Y. M. J. Alloys Compd. 2020, 815, 152660; https://doi.org/10.1016/j.jallcom.2019.152660.Search in Google Scholar

12. Lukachuk, M., Zaremba, V. I., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2004, 59b, 182–189; https://doi.org/10.1515/znb-2004-0210.Search in Google Scholar

13. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. unpublished results.Search in Google Scholar

14. Tyvanchuk, Y., Gulay, N., Bigun, I., Galadzhun, Y., Kalychak, Y. Z. Naturforsch. 2015, 70, 283–287; https://doi.org/10.1515/znb-2014-0216.Search in Google Scholar

15. Kalychak, Y. M., Dmytrakh, O. V., Bodak, O. I., Ohryzlo, M. M. Dopov. Akad. Nauk. Ukr. RSR 1984, 1, 33–35.Search in Google Scholar

16. Dwight, A. E., Kimball, C. W. J. Less-Common Met. 1987, 127, 179–182; https://doi.org/10.1016/0022-5088(87)90376-6.Search in Google Scholar

17. Gulay, N., Tyvanchuk, Y., Kalychak, Y. Visn. Lviv Univ. 2017, 58, 63–68.Search in Google Scholar

18. Lukachuk, M., Galadzhun, Y. V., Zaremba, R. I., Dzevenko, M. V., Kalychak, Y. M., Zaremba, V. I., Rodewald, U. C., Pöttgen, R. J. Solid State Chem. 2005, 178, 2724–2733; https://doi.org/10.1016/j.jssc.2005.06.021.Search in Google Scholar

19. Zaremba, R. I., Kalychak, Y. M., Rodewald, U. C., Pöttgen, R., Zaremba, V. I. Z. Naturforsch. 2006, 61b, 942–948; https://doi.org/10.1515/znb-2006-0803.Search in Google Scholar

20. Gulay, N., Tyvanchuk, Y., Daszkiewicz, M., Stel’makhovych, B., Kalychak, Y. Z. Naturforsch. 2019, 74, 289–295; https://doi.org/10.1515/znb-2018-0275.Search in Google Scholar

21. Hulliger, F. J. Alloys Compd. 1996, 232, 160–164; https://doi.org/10.1016/0925-8388(95)01925-1.Search in Google Scholar

22. Lukachuk, M., Heying, B., Rodewald, U. C., Pöttgen, R. Heteroat. Chem. 2005, 16, 364–368; https://doi.org/10.1002/hc.20106.Search in Google Scholar

23. Zaremba, V. I., Baraniak, V. M., Kalychak, Y. M. Visn. Lviv Univ. 1984, 25, 18–19.Search in Google Scholar

24. Gulay, N., Daszkiewicz, M., Tyvanchuk, Y., Kalychak, Y. Visn. Lviv Univ. 2018, 59, 60–66; https://doi.org/10.30970/vch.5901.060.Search in Google Scholar

25. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, aop; https://doi.org/10.1515/znb-2021-0052.Search in Google Scholar

26. Zaremba, R., Pöttgen, R. Z. Naturforsch. 2007, 62b, 1567–1573; https://doi.org/10.1515/znb-2007-1215.Search in Google Scholar

27. Gulay, N. L., Daszkiewicz, M., Tyvanchuk, Y. B., Kalychak, Y. M., Kaczorowski, D. J. Alloys Compd. 2018, 750, 92–95; https://doi.org/10.1016/j.jallcom.2018.03.360.Search in Google Scholar

28. Zaremba, R., Hermes, W., Eul, M., Pöttgen, R. Z. Naturforsch. 2008, 63b, 1447–1449; https://doi.org/10.1515/znb-2008-1219.Search in Google Scholar

29. Galadzhun, Y. V., Zaremba, V. I., Piotrowski, H., Mayer, P., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2000, 55b, 1025–1030; https://doi.org/10.1515/znb-2000-1107.Search in Google Scholar

30. Zaremba, R., Rodewald, U. C., Pöttgen, R. Monatsh. Chem. 2007, 138, 819–822; https://doi.org/10.1007/s00706-007-0702-6.Search in Google Scholar

31. Graf, T., Casper, F., Winterlik, J., Balke, B., Fecher, G. H., Felser, C. Z. Anorg. Allg. Chem. 2009, 635, 976–981; https://doi.org/10.1002/zaac.200900036.Search in Google Scholar

32. Zaremba, V. I., Zakharko, O. Y., Kalychak, Y. M., Bodak, O. I. Dopov. Akad. Nauk Ukr. RSR Ser. B 1987, 12, 44–46.Search in Google Scholar

33. Kalychak, Y. M., Zaremba, V. I., Galadzhun, Y. V., Miliyanchuk, Kh. Yu., Hoffmann, R.-D., Pöttgen, R. Chem. Eur J. 2001, 7, 5343–5349; https://doi.org/10.1002/1521-3765(20011217)7:24<5343::aid-chem5343>3.0.co;2-#.10.1002/1521-3765(20011217)7:24<5343::AID-CHEM5343>3.0.CO;2-#Search in Google Scholar

34. Pagliuso, P. G., Thompson, J. D., Hundley, M. F., Sarrao, J. L., Fisk, Z. Phys. Rev. B 2001, 63, 054426; https://doi.org/10.1103/physrevb.63.092406.Search in Google Scholar

35. Kalychak, Y. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth-transition metal-indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider Jr, K. A., Pecharsky, V. K., Bünzli, J.-C., Eds. Elsevier: Amsterdam, Vol. 34, 2005; pp. 1–133. chapter 218.10.1016/S0168-1273(04)34001-8Search in Google Scholar

36. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

37. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150; https://doi.org/10.1524/zkri.1999.214.3.143.Search in Google Scholar

38. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

39. Palatinus, L. Acta Crystallogr. 2013, 69b, 1–16; https://doi.org/10.1107/s2052519212051366.Search in Google Scholar

40. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

41. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1016/b978-0-12-415817-7.00037-2.Search in Google Scholar

42. Müller, U. Inorganic Structural Chemistry, 2nd ed.; Wiley: Chichester, 2007.Search in Google Scholar

43. Felser, C., Hirohata, A., Eds. Heusler Alloys – Properties, Growth, Applications; Springer: Cham (Switzerland), 2016.10.1007/978-3-319-21449-8Search in Google Scholar

44. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Search in Google Scholar

45. Zumdick, M. F., Pöttgen, R. Z. Kristallogr. 1999, 214, 90–97; https://doi.org/10.1524/zkri.1999.214.2.90.Search in Google Scholar

46. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Search in Google Scholar

47. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

48. Klenner, S., Bönnighausen, J., Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, 1359–1364; https://doi.org/10.1002/zaac.202000075.Search in Google Scholar

49. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

50. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2020/21); ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar

51. Compton, V. B., Matthias, B. T. Acta Crystallogr. 1959, 12, 651–654; https://doi.org/10.1107/s0365110x59001918.Search in Google Scholar

52. Zumdick, M. F., Landrum, G. A., Dronskowski, R., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2000, 150, 19–30; https://doi.org/10.1006/jssc.1999.8541.Search in Google Scholar

53. Zumdick, M. F., Pöttgen, R., Zaremba, V. I., Hoffmann, R.-D. J. Solid State Chem. 2002, 166, 305–310; https://doi.org/10.1006/jssc.2002.9591.Search in Google Scholar

54. Prchal, J., Javorský, P., Rusz, J., de Boer, F., Diviš, M., Kitazawa, H., Dönni, A., Daniš, S., Sechovský, V. Phys. Rev. B 2008, 77, 134106; https://doi.org/10.1103/physrevb.77.134106.Search in Google Scholar

55. Gupta, S., Suresh, K. G., Nigam, A. K., Mudryk, Y., Paudyal, D., Pecharsky, V. K., Gschneidner, K. A.Jr. J. Alloys Compd. 2014, 613, 280–287; https://doi.org/10.1016/j.jallcom.2014.06.027.Search in Google Scholar

56. Engelbert, S., Hoffmann, R.-D., Kösters, J., Klenner, S., Pöttgen, R. Z. Kristallogr. 2021, 236, 93–104; https://doi.org/10.1515/zkri-2021-2008.Search in Google Scholar

Received: 2021-06-04
Accepted: 2021-06-16
Published Online: 2021-06-29
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2021-0072/html
Scroll to top button