Skip to main content
Log in

Interpretation of cone penetration test in clay with smoothed particle finite element method

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Cone penetration test (CPT) is widely used to explore the in situ soil mechanical properties and the stratigraphy. The numerical simulation of CPT can help understand its mechanical process and link the testing data to soil properties. However, this task is challenging due to multiple (i.e., geometric, material and contact) nonlinearity of the problem. This study extends a large deformation numerical framework, smoothed particle finite element method (SPFEM), to address this problem. A finite element formulation for multibody frictional contact problems is incorporated to deal with the interaction between the steel cone and soil. An explicit stress point integration scheme with substepping is adopted to solve the elastoplastic constitutive equation of soil. The details of the novel numerical procedure are demonstrated. Using the developed approach, parametric studies are conducted for both undrained Tresca soil and fully drained modified Cam-Clay. The correctness and robustness of the proposed approach are validated. For the undrained Tresca soil, a linear relationship between the cone factor \(N_{kt}\) and the natural logarithm of rigidity index \(\mathrm {ln}(I_{r})\) is confirmed, and then, a new equation for the interpretation of soil undrained shear strength is proposed. For fully drained modified Cam-Clay, the effects of some model parameters and earth pressure coefficient at-rest \(K_0\) on the drained cone factor are elucidated. Direct numerical simulation of CPT with SPFEM can provide an effective approach to determine some key parameters of the soil constitutive model and therefore improve the accuracy of numerical simulation for engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Acar YB, Tumay MT (1986) Strain field around cones in steady penetration. J Geotech Eng 112(2):207–213

    Article  Google Scholar 

  2. Baligh MM (1985) Strain path method. J Geotech Eng 111(9):1108–1136

    Article  Google Scholar 

  3. Baligh MM (1975) Theory of deep site static cone penetration resistance. Research Report R75-56, Department of Civil Engineering, MIT, Cambridge, pp 145

  4. Beuth L (2012) Formulation and application of a quasi-static material point method. Dissertation, University of Stuttgart

  5. Ceccato F, Beuth L, Simonini P (2016) Analysis of piezocone penetration under different drainage conditions with the two-phase material point method. J Geotech Geoenviron Eng 142(12):4016066

    Article  Google Scholar 

  6. Ceccato F, Simonini P (2017) Numerical study of partially drained penetration and pore pressure dissipation in piezocone test. Acta Geotech 12(1):195–209

    Article  Google Scholar 

  7. Ceccato F, Veuth L, Vermeer PA et al (2016) Two-phase material point method applied to the study of cone penetration. Comput Geotech 80:440–452

    Article  Google Scholar 

  8. Chen JS, Wu CT, Yoon S et al (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466

    Article  MATH  Google Scholar 

  9. Cudmani R, Osinov VA (2011) The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests. Can Geotech J 38(3):622–638

    Article  Google Scholar 

  10. De Simone P, Golia G (1988) Theoretical analysis of the cone penetration test in sands. In: Proceedings of the First International Symposium on Penetration Testing. Rotterdam, The Netherlands. AA Balkema, pp 729–735

  11. Durgunoglu HT, Mitchell JK (1975) Static penetration resistance of soils, I-Analysis, II-Evaluation of theory and implications for practice. In: Proceedings of the Conference on In Situ Measurement of Soil Properties. North Carolina, USA. ASCE, pp 151–189

  12. Edelsbrunner H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13(1):43–72

    Article  MATH  Google Scholar 

  13. Ghasemi P, Calvello M, Martinelli M et al (2018) MPM simulation of CPT and model calibration by inverse analysis. In: Proceedings of the 4th international symposium on cone penetration testing. Amsterdam, The Netherlands. CRC Press, pp 295–301

  14. Gill DR, Lehane BM (2000) Extending the strain path method analogy for modelling penetrometer installation. Int J Numer Anal Methods Geomech 24(5):477–489

    Article  MATH  Google Scholar 

  15. Giretti D, Been K, Fioravante V et al (2018) CPT calibration and analysis for a carbonate sand. Géotechnique 68(4):345–357

    Article  Google Scholar 

  16. Hamann T, Qiu G, Grabe J (2015) Application of a Coupled Eulerian-Lagrangian approach on pile installation problems under partially drained conditions. Comput Geotech 63:279–290

    Article  Google Scholar 

  17. Houlsby GT, Wheeler AA, Norbury J (1985) Analysis of undrained cone penetration as a steady flow problem. In: Proceedings of the Fifth International Conference on Numerical Methods in Geomechanics. Nagoya, Japan. AA Balkema, pp 1767–1773

  18. Houlsby GT, Wroth CP (1982) Determination of undrained strengths by cone penetration tests. In: Proceedings of the Second European Symposium on Penetration Testing. Amsterdam, The Netherlands. CRC Press, Boca Raton, pp 585–590

  19. Huang AB (1989) Strain-path analyses for arbitrary three-dimensional penetrometers. Int J Numer Anal Methods Geomech 13(5):551–564

    Article  MATH  Google Scholar 

  20. Idelsohn SR, Oñate E, Del Pin F (2003) A Lagrangian meshless finite element method applied to fluid-structure interaction problems. Comput Struct 81(8–11):655–671

    Article  Google Scholar 

  21. Janbu N, Senneset K (1974) Effective stress interpretation of in situ static penetration tests. In: Proceedings of the First European Symposium on Penetration Testing. Stockholm, Sweden. National Swedish Building Research, pp 181–193

  22. Konrad JM, Law KT (1987) Preconsolidation pressure from piezocone tests in marine clays. Géotechnique 37(2):177–190

    Article  Google Scholar 

  23. Koumoto T (1988) Ultimate bearing capacity of cones in sand. In: Proceedings of the First International Symposium on Penetration Testing. Rotterdam, The Netherlands. AA Balkema, pp 809–813

  24. Kurup PU, Voyiadjis GZ, Tumay MT (1994) Calibration chamber studies of miniature piezocone penetration tests in cohesive soil specimens. J Geotech Eng 120(1):81–107

    Article  Google Scholar 

  25. Lim YX, Tan SA, Phoon KK (2018) Application of press-replace method to simulate undrained cone penetration. Int J Geomech 18(7):04018066

    Article  Google Scholar 

  26. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H et al (2009) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87(1–2):14–26

    Article  MATH  Google Scholar 

  27. Liyanapathirana DS (2009) Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay. Comput Geotech 36(5):851–860

    Article  Google Scholar 

  28. Lu Q, Randolph MF, Hu Y et al (2004) A numerical study of cone penetration in clay. Géotechnique 54(4):257–267

    Article  Google Scholar 

  29. Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing in geotechnical practice. Spon Press, New York

    Google Scholar 

  30. Luo YL, Huang Y (2020) Effect of open-framework gravel on suffusion in sandy gravel alluvium. Acta Geotech 15:2649–2664

    Article  Google Scholar 

  31. Luo YL, Luo B, Xiao M (2020) Effect of deviator stress on the initiation of suffusion. Acta Geotech 15:1607–1617

    Article  Google Scholar 

  32. Ma HL, Zhou M, Hu YX et al (2016) Interpretation of layer boundaries and shear strengths for soft-stiff-soft clays using CPT data: LDFE analyses. J Geotech Geoenviron Eng 142(1):04015055

    Article  Google Scholar 

  33. Ma HL, Zhou M, Hu YX et al (2014) Large deformation fe analyses of cone penetration in single layer non-homogeneous and three-layer soft-stiff-soft clays. In: Proceedings of the 33th international conference on ocean, offshore and arctic engineering. San Francisco, USA. ASME, pp 1–9

  34. Mahmoodzadeh H, Randolph MF (2014) Penetrometer testing: effect of partial consolidation on subsequent dissipation response. J Geotech Geoenviron Eng 140(6): 04014022

  35. Monforte L, Arroyo M, Carbonell JM et al (2017) Numerical simulation of undrained insertion problems in geotechnical engineering with the particle finite element method (PFEM). Comput Geotech 82:144–156

    Article  Google Scholar 

  36. Monforte L, Arroyo M, Carbonell JM et al (2018) Coupled effective stress analysis of insertion problems in geotechnics with the particle finite element method. Comput Geotech 101:114–129

    Article  Google Scholar 

  37. Moug DM, Boulanger RW, DeJong JT et al (2019) Axisymmetric simulations of cone penetration in saturated clay. J Geotech Geoenviron Eng 145(4):04019008

    Article  Google Scholar 

  38. Qiu G (2014) Numerical analysis of penetration tests in soils. In: Grabe J (ed) Ports for container ships of future generations. Technical University of Hamburg, Hamburg, pp 183–196

    Google Scholar 

  39. Salgado R, Mitchell JK, Jamiolkowski M (1997) Cavity expansion and penetration resistance in sand. J Geotech Geoenviron Eng 123(4):344–354

    Article  Google Scholar 

  40. Salgado R, Prezzi M (2007) Computation of cavity expansion pressure and penetration resistance in sands. Int J Geomech ASCE 7(4):251–265

    Article  Google Scholar 

  41. Sheng DC, Cui LJ, Ansari Y (2013) Interpretation of cone factor in undrained soils via full-penetration finite-element analysis. Int J Geomech 13(6):745–753

    Article  Google Scholar 

  42. Sloan SW (1987) Substepping schemes for the numerical integration of elastoplastic stress-strain relations. Int J Numer Methods Eng 24(5):893–911

    Article  MATH  Google Scholar 

  43. Sloan SW, Abbo AJ, Sheng DC (2001) Refined explicit integration of elastoplastic models with automatic error control. Eng Comput 18(1/2):121–154

    Article  MATH  Google Scholar 

  44. Su SF (2010) Undrained shear strengths of clay around an advancing cone. Can Geotech J 47(10):1149–1158

    Article  Google Scholar 

  45. Suzuki Y, Lehane BM (2015) Analysis of CPT end resistance at variable penetration rates using the spherical cavity expansion method in normally consolidated soils. Comput Geotech 69:141–152

    Article  Google Scholar 

  46. Świtała BM, Wu W, Wang S (2019) Implementation of a coupled hydro-mechanical model for root-reinforced soils in finite element code. Comput Geotech 112:197–203

    Article  Google Scholar 

  47. Teh CI, Houlsby GT (1991) An analytical study of the cone penetration test in clay. Géotechnique 41(1):17–34

    Article  Google Scholar 

  48. Teh CI (1987) An analytical study of the cone penetration test. Dissertation, Oxford University

  49. Teh CI, Houlsby GT (1991) An analytical study of the cone penetration test in clay. Soil Mechanics Report No.SM099/89, Department of Engineering Science, University of Oxford, Oxford, pp 1–47

  50. van den Berg P (1994) Analysis of soil penetration. Dissertation, Delft University of Technology

  51. Vesic AS (1972) Expansion of cavities in infinite soil mass. J Soil Mech Found Div 98(SM3):265–290

    Article  Google Scholar 

  52. Walker J, Yu HS (2006) Adaptive finite element analysis of cone penetration in clay. Acta Geotech 1(1):43–57

    Article  Google Scholar 

  53. Wang T, Liu WL, Wu XN et al (2019) One-dimensional modelling of pile jacking installation based on CPT tests in sand. Géotechnique 69(10):877–887

    Article  Google Scholar 

  54. Wang S, Wu W (2020) A simple hypoplastic model for overconsolidated clays. Acta Geotech. https://doi.org/10.1007/s11440-020-01000-z

    Article  Google Scholar 

  55. Wang S, Wu W, Peng C et al (2018) Numerical integration and FE implementation of a hypoplastic constitutive model. Acta Geotech 13:1265–1281

    Article  Google Scholar 

  56. Wu Y, Li N, Hyodo M et al (2019) Modeling the mechanical response of gas hydrate reservoirs in triaxial stress space. Int J Hydrog Energy 44(48):26698–26710

    Article  Google Scholar 

  57. Wu Y, Yamamoto H, Cui J et al (2020) Influence of load mode on particle crushing characteristics of silica sand at high stresses. Int J Geomech 20(3):04019194

    Article  Google Scholar 

  58. Yi JT, Goh SH, Lee FH et al (2012) A numerical study of cone penetration in fine-grained soils allowing for consolidation effects. Géotechnique 62(8):707–719

    Article  Google Scholar 

  59. Yu HS, Herrmann LR, Boulanger RW (2000) Analysis of steady cone penetration in clay. J Geotech Geoenviron Eng 126(7):594–605

    Article  Google Scholar 

  60. Yu HS, Mitchell JK (1998) Analysis of cone resistance: review of methods. J Geotech Geoenviron Eng 124(2):140–149

    Article  Google Scholar 

  61. Yuan WH, Liu K, Zhang W et al (2020) Dynamic modeling of large deformation slope failure using smoothed particle finite element method. Landslides 17:1591–1603

    Article  Google Scholar 

  62. Yuan WH, Wang B, Zhang W et al (2019) Development of an explicit smoothed particle finite element method for geotechnical applications. Comput Geotech 106:42–51

    Article  Google Scholar 

  63. Yuan WH, Wang HC, Zhang W et al (2021) Particle finite element method implementation for large deformation analysis using Abaqus. Acta Geotech. https://doi.org/10.1007/s11440-020-01124-2

    Article  Google Scholar 

  64. Yuan WH, Zhang W, Dai BB et al (2019) Application of the particle finite element method for large deformation consolidation analysis. Eng Comput 36(9):3138–3163

    Article  Google Scholar 

  65. Zhang X, Krabbenhoft K, Pedroso DM (2013) Particle finite element analysis of large deformation and granular flow problems. Comput Geotech 54:133–142

    Article  Google Scholar 

  66. Zhang X, Krabbenhoft K, Sheng DC (2014) Particle finite element analysis of the granular column collapse problem. Granul Matter 16(4):609–619

    Article  Google Scholar 

  67. Zhang X, Krabbenhoft K, Sheng DC (2015) Numerical simulation of a flow-like landslide using the particle finite element method. Comput Mech 55(1):167–177

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhang W, Yuan WH, Dai BB (2018) Smoothed particle finite-element method for large-deformation problems in geomechanics. Int J Geomech 18(4):04018010

    Article  Google Scholar 

  69. Zhang W, Zhong ZH, Peng C et al (2021) GPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanics. Comput Geotech 129:103856

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the Natural Science Foundation of Guangdong Province (Grant No. 2018A030310346), the Water Conservancy Science and Technology Innovation Project of Guangdong Province (Grant Nos. 2017-30, 2020-11), the H2020 Marie Skłodowska-Curie Actions RISE 2017 HERCULES (778360) and FRAMED (734485), the Erasmus+ KA2 project Re-built (2018-1-RO01-KA203-049214), the Nazarbayev University Research Fund (SOE2017001 and the Natural Science Foundation of China (Grant No. 41807223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-hai Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zou, Jq., Zhang, Xw. et al. Interpretation of cone penetration test in clay with smoothed particle finite element method. Acta Geotech. 16, 2593–2607 (2021). https://doi.org/10.1007/s11440-021-01217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01217-6

Keywords

Navigation