Skip to main content
Log in

The search for fast transients with CZTI

  • SCIENCE RESULTS
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The Cadmium–Zinc–Telluride Imager on AstroSat has proven to be a very effective All-Sky monitor in the hard X-ray regime, detecting over three hundred GRBs and putting highly competitive upper limits on X-ray emissions from gravitational wave sources and fast radio bursts. We present the algorithms used for searching for such transient sources in CZTI data, and for calculating upper limits in case of non-detections. We introduce CIFT: the CZTI Interface for Fast Transients, a framework used to streamline these processes. We present details of 87 new GRBs detected by this framework that were previously not detected in CZTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. CZTI pipeline: http://astrosat-ssc.iucaa.in/?q=cztiData.

  2. CIFT is pronounced as sift.

  3. We note that the subsequent arguments become stronger if the actual detected rate is lower as was expected. After completing the search, indeed we found a much lower GRB rate.

  4. https://pypi.org/project/Flask/.

  5. https://gcn.gsfc.nasa.gov/gcn3_archive.html.

  6. https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html.

  7. https://gcn.gsfc.nasa.gov/fermi_gbm_subthresh_archive.html.

  8. https://gammaray.nsstc.nasa.gov/gbm/science/sgrb_search.html.

References

  • Abbott R., Abbott T. D., Abraham S. et al. 2020, GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, arXiv:2010.14527

  • Abraham S., Mukund N., Vibhute A. et al. 2019, ArXiv e-prints, 1906.09670, arXiv:1906.09670

  • Anumarlapudi A., Bhalerao V., Tendulkar S. P., Balasubramanian A. 2020, Astrophys. J., 888, 40

    Article  ADS  Google Scholar 

  • Bhalerao V., Bhattacharya D., Rao A. R., Vadawale S. 2015, GRB Coordinates Network, 18422, 1

    Google Scholar 

  • Bhalerao V., Kumar V., Bhattacharya D., Rao A. R., Vadawale S. 2016, GRB Coordinates Network, 19519, 1

    Google Scholar 

  • Bhalerao V., Kasliwal M., Bhattacharya D. et al. 2017a, Astrophys. J., 845, arXiv:1706.00024

  • Bhalerao V., Bhattacharya D., Vibhute A. et al. 2017b, J. Astrophys. Astr., 38, 31

    Article  ADS  Google Scholar 

  • Chattopadhyay T., Gupta S., Sharma V. et al. 2021, J. Astrophys. Astr., 42, https://doi.org/10.1007/s12036-021-09718-2

  • Gruber D., Goldstein A., Weller von Ahlefeld V. et al. 2014, 211, 12

  • Gupta S., Sharma V., Bhattacharya D. et al. 2020, GRB Coordinates Network, 28451, 1

    Google Scholar 

  • Hunter J. D. 2007, Computing in Science & Engineering, 9, 90

    Article  ADS  Google Scholar 

  • Lex A., Gehlenborg N., Strobelt H., Vuillemot R., Pfister H. 2014, IEEE Trans. on Visualization and Computer Graphics, 20, 1983

  • Li C. K., Lin L., Xiong S. L. et al. 2020, arXiv e-prints, arXiv:2005.11071

  • Lien A., Sakamoto T., Barthelmy, S. D. et al. 2016, Astrophys. J., 829, 7

    Article  ADS  Google Scholar 

  • Marathe A., Sharma Y., Bhalerao V. et al. 2019, GRB Coordinates Network, 24972, 1

    Google Scholar 

  • Mate S., Bhalerao V., Bhattacharya D. et al. 2017, GRB Coordinates Network, 20796, 1

    Google Scholar 

  • Mate S., Chattopadhyay T., Bhalerao V. et al. 2021, submitted to J. Astrophys. Astr., 42, https://doi.org/10.1007/s12036-021-09763-X

    Google Scholar 

  • Mereghetti S., Savchenko V., Ferrigno C. et al. 2020, Astrophys. J. Lett., 898, L29

    Article  ADS  Google Scholar 

  • Narayana Bhat P., Meegan C. A., von Kienlin A. et al. 2016, 223, 28

  • Rao A. R., Chand V., Hingar M. K. et al. 2016, Astrophys. J., 833, 86

    Article  ADS  Google Scholar 

  • Ratheesh A., Rao A., Mithun N. et al. 2021, J. Astrophys. Astr., 42, https://doi.org/10.1007/s12036-021-09716-4

    Google Scholar 

  • Robitaille T. P., Tollerud E. J., Greenfield P. et al. 2013, A&A, 558, A33

    Article  ADS  Google Scholar 

  • Scargle J. D., Norris J. P., Jackson B., Chiang J. 2012, Astrophys. J., 764, 167

    Article  ADS  Google Scholar 

  • Sharma Y., Bhalerao V., Khanam T. et al. 2018, GRB Coordinates Network, 23511, 1

    Google Scholar 

  • Shenoy V., Aarthy E., Bhalerao V. et al. 2020, GRB Coordinates Network, 27315, 1

    Google Scholar 

  • Shenoy V., Sharma Y., Bhalerao V. et al. 2019a, GRB Coordinates Network, 26378, 1

    Google Scholar 

  • Shenoy V., Sharma Y., Bhalerao V. et al. 2019b, GRB Coordinates Network, 26376, 1

    Google Scholar 

  • Shenoy V., Sharma Y., Bhalerao V. et al. 2019c, GRB Coordinates Network, 26268, 1

    Google Scholar 

  • Shenoy V., Bhalerao, V., Gupta, S. et al. 2020, GRB Coordinates Network, 28354, 1

    Google Scholar 

  • Singh K. P., Tandon S. N., Agrawal P. C. et al. 2014, in Takahashi T., den Herder J.-W. A., Bautz M., eds, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, vol. 9144, 91441S

  • van der Walt S., Colbert S. C., Varoquaux G. 2011, Computing in Science & Engineering, 13, 22

    Article  Google Scholar 

  • von Kienlin A., Meegan C. A., Paciesas W. S. et al. 2014, 211, 13

  • von Kienlin A., Meegan C. A., Paciesas W. S. et al. 2020, Astrophys. J., 893, 46

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CZT-Imager is built by a consortium of Institutes across India. The Tata Institute of Fundamental Research, Mumbai, led the effort with instrument design and development. Vikram Sarabhai Space Centre, Thiruvananthapuram provided the electronic design, assembly and testing. ISRO Satellite Centre (ISAC), Bengaluru provided the mechanical design, quality consultation and project management. The Inter University Centre for Astronomy and Astrophysics (IUCAA), Pune did the Coded Mask design, instrument calibration, and Payload Operation Centre. Space Application Centre (SAC) at Ahmedabad provided the analysis software. Physical Research Laboratory (PRL) Ahmedabad, provided the polarisation detection algorithm and ground calibration. A vast number of industries participated in the fabrication and the University sector pitched in by participating in the test and evaluation of the payload. The Indian Space Research Organisation funded, managed and facilitated the project. This work utilised various software including Python, AstroPy (Robitaille et al. 2013), NumPy (van der Walt et al. 2011), Matplotlib (Hunter 2007), https://github.com/jnothman/upsetplot/UpSetPlot (Lex et al. 1983), and ngrok.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bhalerao.

Additional information

This article is part of the Special Issuse on “AstroSat: Five Years in Orbit”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, Y., Marathe, A., Bhalerao, V. et al. The search for fast transients with CZTI. J Astrophys Astron 42, 73 (2021). https://doi.org/10.1007/s12036-021-09714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-021-09714-6

Keywords

Navigation