Skip to main content
Log in

Inexact methods for sequential fully implicit (SFI) reservoir simulation

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The sequential fully implicit (SFI) scheme was introduced (Jenny et al. J. Comput. Phys. 217(2), 627–641 2006) for solving coupled flow and transport problems. Each time step for SFI consists of an outer loop, in which there are inner Newton loops to implicitly and sequentially solve the pressure and transport sub-problems. In standard SFI, the sub-problems are usually solved with tight tolerances at every outer iteration. This can result in wasted computations that contribute little progress towards the coupled solution. The issue is known as ‘over-solving’. Our objective is to minimize the cost of inner solvers while maintaining the convergence rate of SFI. We first extended a nonlinear-acceleration (NA) framework (Jiang and Tchelepi, Comput. Methods Appl. Mech. Eng. 352, 246–275, 2019) to multi-component compositional models, for ensuring robust outer-loop convergence. We then developed inexact-type methods that alleviate ‘over-solving’. It is found that there is no need for one sub-problem to strive for perfection, while the coupled (outer) residual remains high due to the other sub-problem. The new SFI solver was tested using several complex cases. The problems involve multi-phase and EoS-based compositional fluid systems. We compared different strategies such as fixed relaxations on absolute and relative tolerances for the inner solvers, as well as an adaptive approach. The results show that the basic SFI method is quite inefficient. Away from a coupled solution, additional accuracy achieved in inner solvers is wasted, contributing to little or no reduction of the overall outer residual. By comparison, the adaptive inexact method provides relative tolerances adequate for the current convergence state of the sub-problems. We show across a wide range of flow conditions that the new solver can effectively resolve the over-solving issue, and thus greatly improve the overall efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acs, G., Doleschall, S., Farkas, E.: General purpose compositional model. Soc. Pet. Eng. J. 25(04), 543–553 (1985)

    Article  Google Scholar 

  2. Appleyard, J. R., Cheshire, I. M.: The cascade method for accelerated convergence in implicit simulators. In: European petroleum conference, pp 259–290 (1982)

  3. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Chapman & Hall, London (1979)

    Google Scholar 

  4. Baker, L.E.: Three-phase relative permeability correlations. In: SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1988)

  5. Birken, P.: Termination criteria for inexact fixed-point schemes. Numerical Linear Algebra with Applications 22(4), 702–716 (2015)

    Article  Google Scholar 

  6. Brenier, Y., Jaffré, J.: Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer. Anal. 28(3), 685–696 (1991)

    Article  Google Scholar 

  7. Cao, H.: Development of techniques for general purpose simulators. Doctoral dissertation, Stanford University (2002)

  8. Coats, K. H.: An equation of state compositional model. Soc. Pet. Eng. J. 20(05), 363–376 (1980)

    Article  Google Scholar 

  9. Coats, K. H.: A note on IMPES and some IMPES-based simulation models. SPE J. 5(03), 245–251 (2000)

    Article  Google Scholar 

  10. Collins, D. A., Nghiem, L. X., Li, Y. K., Grabonstotter, J. E.: An efficient approach to adaptive-implicit compositional simulation with an equation of state. SPE Reservoir Engineering 7(02), 259–264 (1992)

    Article  Google Scholar 

  11. Christie, M.A, Blunt, M.J.: Tenth SPE comparative solution project: A comparison of upscaling techniques. In: SPE reservoir simulation symposium. Society of Petroleum Engineers (2001)

  12. Dembo, R. S., Eisenstat, S. C., Steihaug, T.: Inexact newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    Article  Google Scholar 

  13. Dawson, C. N., Klíe, H., Wheeler, M. F., Woodward, C. S.: A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton–Krylov solver. Comput. Geosci. 1(3), 215–249 (1997)

    Article  Google Scholar 

  14. Degroote, J., Souto-Iglesias, A., Van Paepegem, W., Annerel, S., Bruggeman, P., Vierendeels, J.: Partitioned simulation of the interaction between an elastic structure and free surface flow. Computer Methods Appl. Mech. Eng. 199(33), 2085–2098 (2010)

    Article  Google Scholar 

  15. Eisenstat, S. C., Walker, H. F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)

    Article  Google Scholar 

  16. Garipov, T. T., Tomin, P., Rin, R., Voskov, D. V., Tchelepi, H. A.: Unified thermo-compositional-mechanical framework for reservoir simulation. Comput. Geosci. 22 (4), 1039–1057 (2018)

    Article  Google Scholar 

  17. Hajibeygi, H., Tchelepi, H. A.: Compositional multiscale finite-volume formulation. SPE J. 19(02), 316–326 (2014)

    Article  Google Scholar 

  18. Jenny, P., Lee, S. H., Tchelepi, H. A.: Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. J. Comput. Phys. 217(2), 627–641 (2006)

    Article  Google Scholar 

  19. Jenny, P., Tchelepi, H. A., Lee, S. H.: Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions. J. Comput. Phys. 228(20), 7497–7512 (2009)

    Article  Google Scholar 

  20. Jiang, J., Younis, R. M.: Efficient C1-continuous phase-potential upwind (C1-PPU) schemes for coupled multiphase flow and transport with gravity. Adv. Water Resour. 108, 184–204 (2017)

    Article  Google Scholar 

  21. Jiang, J., Tchelepi, H. A.: Nonlinear acceleration of sequential fully implicit (SFI) method for coupled flow and transport in porous media. Comput. Methods Appl. Mech. Eng. 352, 246–275 (2019)

    Article  Google Scholar 

  22. Klie, H. M.: Krylov-secant methods for solving large-scale systems of coupled nonlinear parabolic equations. Ph.D. thesis, Department of Computational and Applied Mathematics, Rice University, Houston, TX (1996)

  23. Klie, H., Wheeler, M.F.: Krylov-secant methods for accelerating the solution of fully implicit formulations. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2005)

  24. Kuttler, U., Wall, W. A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)

    Article  Google Scholar 

  25. Kozlova, A., Li, Z., Natvig, J. R., Watanabe, S., Zhou, Y., Bratvedt, K., Lee, S.H.: A real-field multiscale black-oil reservoir simulator. SPE Journal (2016)

  26. Lee, S. H., Wolfsteiner, C., Tchelepi, H. A.: Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity. Comput. Geosci. 12 (3), 351–366 (2008)

    Article  Google Scholar 

  27. Lee, S. H., Efendiev, Y., Tchelepi, H. A.: Hybrid upwind discretization of nonlinear two-phase flow with gravity. Adv. Water Resour. 82, 27–38 (2015)

    Article  Google Scholar 

  28. Lee, S. H., Efendiev, Y.: C1-Continuous relative permeability and hybrid upwind discretization of three phase flow in porous media. Adv. Water Resour. 96, 209–224 (2016)

    Article  Google Scholar 

  29. Lie, K. A., Krogstad, S., Ligaarden, I. S., Natvig, J. R., Nilsen, H. M., Skaflestad, B.: Open-source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012)

    Article  Google Scholar 

  30. Lie, K. A., Møyner, O., Natvig, J.R., Kozlova, A., Bratvedt, K., Watanabe, S., Li, Z.: Successful application of multiscale methods in a real reservoir simulator environment. Computational Geosciences 21(5-6), 981–998 (2017)

    Article  Google Scholar 

  31. Li, B., Tchelepi, H. A.: Nonlinear analysis of multiphase transport in porous media in the presence of viscous, buoyancy, and capillary forces. J. Comput. Phys. 297, 104–131 (2015)

    Article  Google Scholar 

  32. Li, J., Wong, Z.Y., Tomin, P. , Tchelepi, H.: Sequential implicit newton method for coupled multi-segment wells. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2019)

  33. Møyner, O., Lie, K.A.: A multiscale restriction-smoothed basis method for compressible black-oil models. SPE J. 21(06), 2–079 (2016)

    Article  Google Scholar 

  34. Møyner, O. , Tchelepi, H.A.: A mass-conservative sequential implicit multiscale method for isothermal equation-of-state compositional problems. SPE J. 23(06), 2–376 (2018)

    Article  Google Scholar 

  35. Moncorgé, A., Tchelepi, H. A., Jenny, P.: Sequential fully implicit formulation for compositional simulation using natural variables. J. Comput. Phys. 371, 690–711 (2018)

    Article  Google Scholar 

  36. Moncorgé, A., Møyner, O., Tchelepi, H.A., Jenny, P. : Consistent upwinding for sequential fully implicit multiscale compositional simulation. Comput. Geosci., 1–18 (2019)

  37. Rin, R., Tomin, P., Garipov, T., Voskov, D. , Tchelepi, H.: General implicit coupling framework for multi-physics problems. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2017)

  38. Schlumberger: ECLIPSE 2013.2 Technical Description (2013)

  39. Senecal, J.P., Ji, W.: Approaches for mitigating over-solving in multiphysics simulations. Int. J. Numer. Methods Eng. 112(6), 503–528 (2017)

    Article  Google Scholar 

  40. Trangenstein, J. A., Bell, J. B.: Mathematical structure of the black-oil model for petroleum reservoir simulation. SIAM J. Appl. Math. 49(3), 749–783 (1989a)

    Article  Google Scholar 

  41. Trangenstein, J. A., Bell, J. B.: Mathematical structure of compositional reservoir simulation. SIAM J. Sci. Stat. Comput. 10(5), 817–845 (1989b)

    Article  Google Scholar 

  42. Voskov, D. V., Tchelepi, H. A.: Comparison of nonlinear formulations for two-phase multi-component EoS based simulation. J. Pet. Sci. Eng. 82, 101–111 (2012)

    Article  Google Scholar 

  43. Watts, J. W.: A compositional formulation of the pressure and saturation equations. SPE (Society of Petroleum Engineers) Reserv Eng. (United States) (1)3 (1986)

  44. Walker, H. F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715–1735 (2011)

    Article  Google Scholar 

  45. Watanabe, S., Li, Z., Bratvedt, K., Lee, S.H., Natvig, J.: A stable multi-phase nonlinear transport solver with hybrid upwind discretization in multiscale reservoir simulator. In: ECMOR XV-15th European Conference on the Mathematics of Oil Recovery (pp. cp-494). European Association of Geoscientists & Engineers (2016)

  46. Younis, R. , Aziz, K.: Parallel automatically differentiable data-types for next-generation simulator development. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2007)

  47. Younis, R., Tchelepi, H. A., Aziz, K.: Adaptively localized continuation-newton method–nonlinear solvers that converge all the time. SPE J. 15(02), 526–544 (2010)

    Article  Google Scholar 

  48. Zhou, Y., Tchelepi, H.A. , Mallison, B.T.: Automatic differentiation framework for compositional simulation on unstructured grids with multi-point discretization schemes. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2011)

Download references

Acknowledgements

This work was supported by the Chevron/Schlumberger INTERSECT Research & Prototyping project. The authors thank Chevron for permission to publish the paper. Petroleum Research Institute for Reservoir Simulation (SUPRI-B) at Stanford University is gratefully acknowledged for providing the AD-GPRS platform.

We would like to thank Hamdi Tchelepi for inspiring discussions on the inexact methods. We also thank Jiawei Li, Huanquan Pan at Stanford University, and Olav Møyner at SINTEF Digital, for constructive discussions on AD-GPRS, compositional model, sequential formulation, etc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiamin Jiang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Tomin, P. & Zhou, Y. Inexact methods for sequential fully implicit (SFI) reservoir simulation. Comput Geosci 25, 1709–1730 (2021). https://doi.org/10.1007/s10596-021-10072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10072-z

Keywords

Navigation