Skip to main content
Log in

New Proofs of Liouville’s Theorem and Little Picard’s Theorem for Harmonic Functions on \(R^{n} ,n\ge 2\)

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

There are several proofs for the Liouville theorem and the small Picard theorem for harmonic functions on \(R^{n} ,n\ge 2,\) in scientific literature. This paper provides a new simple proof of these theorems using the criteria of normality of harmonic functions and constancy of continuous functions on \(R^{n} ,n\ge 2.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agard, S.: A geometric proof of Mostow’s rigidity theorem for groups of divergence type. Acta Math. 151, 231–252 (1983)

    Article  MathSciNet  Google Scholar 

  2. Ahlfors, V..L.: Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable. McGraw-Hill, Inc (1979)

  3. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  4. Beardon, A.F.: The Geometry of Discrete Groups. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  5. Bergweiler, W.: Bloch’s principle. Comput. Methods Funct. Theory 6, 77–108 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bisi, C., Winkelmann, J.: On Picard theorem over the quarternions. Proc. Am. Math. Soc. Ser. B 7, 106–117 (2020)

    Article  Google Scholar 

  7. Gehring, F.W., Martin, G.J.: Discrete Quasiconformal Groups I. Proc. Lond. Math. Soc. (3), 55, 331–358 (1987)

  8. Kendall W. S.: From stochastic parallel transport to harmonic maps. New directions in Dirichlet forms. AMS/IP Stud. Adv. Math. AMS, 8, 49–115 (1998)

  9. Kolmogorov, A.N., Fomin, S.V.: Elementy teorii funktsiy i funktsional’nogo analiza. Fizmatlit (2019)

  10. Martin, G.J.: On discrete Möbius groups in all dimension: a generalization of Jorgensen’s inequality. Acta Math. 163, 253–289 (1989)

    Article  MathSciNet  Google Scholar 

  11. Martin, G.: The Theory of Quasiconformal Mappings in Higher Dimensions, I arXiv: 1311.0899v1 [math.CV] 4 (2013)

  12. Miniowitz, R.: Normal families of quasimeromorphic mappings. Proc. Am. Math. Soc. 84(1), 35–43 (1982)

    Article  MathSciNet  Google Scholar 

  13. Montel, P.: Lecons sur les Familles Normales de Functons Analytiques et leurs applications. Gautnier-Villars, Paris (1927)

    MATH  Google Scholar 

  14. Nelson, E.: A Proof of Liouville’s Theorem. Proc. Amer. Math. Soc. 12/6, 995 (1961)

  15. Papadimitraki, M.: Classical Potential Theory. University of Crete, Notes, Department of Mathematics (2004)

    Google Scholar 

  16. Pavićević, Ž: Normal Families. Theorems of Liouville and Picard and Bloch Principle, Mathematica Montisnigri 43, 5–9 (2018)

    MathSciNet  Google Scholar 

  17. Pavićević, Ž., Šušić, J.: Fragments of Dynamic of Möbious Mappings and Some Applications. Part I, Mathematica Montisnigri v. XLVI, 31–48 (2019)

  18. Petridis N. C.: A Generalization of The Little Theorem of Picard. Proc. Am. Math. Soc. 61/2, 265–271 (1976)

  19. Pinsky, R.G.: Positive Harmonic Functions and Diffusion. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  20. Rickman, S.: Quasiregular Mappings. Springer-Verlag, Berlin, Heidelberg (1993)

    Book  Google Scholar 

  21. Rickman, S.: On the number of omitted values of entire quasiregular mappings. J. Anal. Math. 37, 100–117 (1980)

    Article  MathSciNet  Google Scholar 

  22. Rickman, S.: The analogue of Picard’s theorem for quasiregular mappings in dimension three. Acta Math. 154(3–4), 195–242 (1985)

    Article  MathSciNet  Google Scholar 

  23. Schiff, L.J.: Normal Families. Springer, Berlin (1993)

    Book  Google Scholar 

  24. Sychev A.V.: Modules and spatial quasiconformal mappings, Science. Sib. Department, 1983 (Sychev A.V., Moduli i prostranstvennyye kvazikonformnyye otobrazheniya, Nauka. Sib. otd-niye, 1983, 152)

  25. Väisälä, J.: On normal quasiconformal functions. Ann. Acad. Sci. Fenn. Ser. A. I. 266,(1959)

  26. Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics, vol. 1319. Springer, Berlin, Heidelberg (1988)

    Book  Google Scholar 

  27. Zalcman, L.: A heuristic principle in complex function theory. Am. Math. Month. 82, 813–817 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This paper is supported by the Science Support Program at the University of Montenegro and the Program Competitiveness of NRNU MEPhI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Žarko Pavićević.

Additional information

Communicated by H. Turgay Kaptanoglu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Harmonic Analysis and Operator Theory” edited by H. Turgay Kaptanoglu, Aurelian Gheondea and Serap Oztop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavićević, Ž., Andjić, M. New Proofs of Liouville’s Theorem and Little Picard’s Theorem for Harmonic Functions on \(R^{n} ,n\ge 2\). Complex Anal. Oper. Theory 15, 93 (2021). https://doi.org/10.1007/s11785-021-01138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-021-01138-y

Keywords

Mathematics Subject Classification

Navigation