Skip to main content
Log in

A Note on the Relation Between the Metric Entropy and the Generalized Fractal Dimensions of Invariant Measures

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We investigate in this work some situations where it is possible to estimate or determine the upper and the lower q-generalized fractal dimensions \(D^{\pm }_{\mu }(q)\), \(q\in {\mathbb {R}}\), of invariant measures associated with continuous transformations over compact metric spaces. In particular, we present an alternative proof of Young’s Theorem by Young (Ergod. Theory Dyn. Syst. 2(1):109–124, 1982) for the generalized fractal dimensions of the Bowen-Margulis measure associated with a \(C^{1+\alpha }\)-Axiom A system over a two-dimensional compact Riemannian manifold M. We also present estimates for the generalized fractal dimensions of an ergodic measure for which Brin-Katok’s Theorem is pointwise satisfied, in terms of its metric entropy. Furthermore, for expansive homeomorphisms (like \(C^1\)-Axiom A systems), we show that the set of invariant measures such that \(D_\mu ^+(q)=0\) (\(q\ge 1\)), under a hyperbolic metric, is generic (taking into account the weak topology). We also show that for each \(s\in [0,1)\), \(D^{+}_{\mu }(s)\) is bounded above, up to a constant, by the topological entropy, also under a hyperbolic metric. Finally, we show that, for some dynamical systems, the metric entropy of an invariant measure is typically zero, settling a conjecture posed by Sigmund (Trans. Am. Math. Soc. 190:285–299, 1974) for Lipschitz transformations which satisfy the specification property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afraimovich, V., Chazottes, J.R., Saussol, B.: Pointwise dimensions for Poincare recurrences associated with maps and special flows. Discret. Contin. Dyn. Syst. 9(2), 263–280 (2003)

    MathSciNet  MATH  Google Scholar 

  • Barbaroux, J.-M., Germinet, F., Tcheremchantsev, S.: Generalized fractal dimensions: equivalences and basic properties. J. Math. Pures Appl. 80(10), 977–1012 (2001)

    Article  MathSciNet  Google Scholar 

  • Barreira, L., Schmeling, J.: Sets of non-typical points have full topological entropy and full Hausdorff dimension. Isr. J. Math. 116, 29–70 (2000)

    Article  MathSciNet  Google Scholar 

  • Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    Article  MathSciNet  Google Scholar 

  • Carvalho, S.L., Condori, A.: Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: generic behavior. Forum Math. 33(2), 435–450 (2021a)

    Article  MathSciNet  Google Scholar 

  • Carvalho, S.L., Condori, A.: Generic properties of invariant measures of full-shift systems over perfect polish metric spaces. Stoch. Dyn. (2021b). https://doi.org/10.1142/S0219493721500404

    Article  MathSciNet  MATH  Google Scholar 

  • Cutler, C.D.: The density theorem and Hausdorff inequality for packing measure in general metric spaces. Ill. J. Math. 39(4), 676–694 (1995)

    MathSciNet  MATH  Google Scholar 

  • Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics, vol. 527. Springer, Berlin (1976)

    Book  Google Scholar 

  • Fan, A.-H., Lau, K.-S., Rao, H.: Relationships between different dimensions of a measure. Mon. Math. 135, 191–201 (2002)

    Article  MathSciNet  Google Scholar 

  • Fathi, A.: Some compact invariant sets for hyperbolic linear automorphisms of torii [tori]. Ergod. Theory Dyn. Syst. 8(2), 191–204 (1988)

    Article  MathSciNet  Google Scholar 

  • Fathi, A.: Expansiveness, hyperbolicity and Hausdorff dimension. Comm. Math. Phys. 126(2), 249–262 (1989)

    Article  MathSciNet  Google Scholar 

  • Grassberger, P., Procaccia, I., Hentschel, H.G.E.: On the characterization of chaotic motions. Lect. Notes Phys. 179, 212–221 (1983)

    Article  Google Scholar 

  • Lewowicz, J.: Lyapunov functions and topological stability. J. Differ. Equ. 38(2), 192–209 (1980)

    Article  MathSciNet  Google Scholar 

  • Mattila, P., Morán, M., Rey, J.-M.: Dimension of a measure. Stud. Math. 142(3), 219–233 (2000)

    Article  Google Scholar 

  • Moritz, A.: An introduction to and comparison of three notions of dimension in metric spaces. Mathematisch Instituut of the Universiteit Leiden, Master theses (2013)

  • Parthasarathy, K.R.: On the category of ergodic measures. Ill. J. Math. 5, 648–656 (1961)

    MathSciNet  MATH  Google Scholar 

  • Pesin, Y.B.: On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions. J. Stat. Phys. 71(3–4), 529–547 (1993)

    Article  MathSciNet  Google Scholar 

  • Pesin, Y.B.: Dimension Theory in Dynamical Systems. Chicago Lectures in Mathematics, University of Chicago Press, Chicago (1997)

    Book  Google Scholar 

  • Pesin, Y., Tempelman, A.: Correlation dimension of measures invariant under group actions. Random Comput. Dyn. 3(3), 137–156 (1995)

    MathSciNet  MATH  Google Scholar 

  • Riquelme, F.: Ruelles inequality in negative curvature. Discret. Contin. Dyn. Syst. 38(6), 2809–2825 (2018)

    Article  MathSciNet  Google Scholar 

  • Rudnicki, R.: Pointwise dimensions and Rényi dimensions. Proc. Am. Math. Soc. 130(7), 1981–1982 (2002)

    Article  Google Scholar 

  • Saussol, B.: Recurrence rate in rapidly mixing dynamical systems. Discret. Contin. Dyn. Syst. 15(1), 259–267 (2006)

    Article  MathSciNet  Google Scholar 

  • Sigmund, K.: Generic properties of invariant measures for Axiom \({\rm A}\) diffeomorphisms. Invent. Math. 11, 99–109 (1970)

    Article  MathSciNet  Google Scholar 

  • Sigmund, K.: On the prevalence of zero entropy. Isr. J. Math. 10, 281–288 (1971)

    Article  MathSciNet  Google Scholar 

  • Sigmund, K.: On mixing measures for axiom a diffeomorphisms. Proc. Am. Math. Soc. 36, 497–504 (1972)

    Article  MathSciNet  Google Scholar 

  • Sigmund, K.: On dynamical systems with the specification property. Trans. Am. Math. Soc. 190, 285–299 (1974)

    Article  MathSciNet  Google Scholar 

  • Simpelaere, D.: Correlation dimension. J. Stat. Phys. 90(1–2), 491–509 (1998)

    Article  MathSciNet  Google Scholar 

  • Takens, F., Verbitski, E.: Multifractal analysis of local entropies for expansive homeomorphisms with specification. Comm. Math. Phys. 203(3), 593–612 (1999)

    Article  MathSciNet  Google Scholar 

  • Verbitskiy, E.: Generalized entropies in dynamical systems. PhD Thesis, University of Groningen/UMCG research database (2000)

  • Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathe-Graduate Texts in Mathematics, Springer, New York (1982)

    Book  Google Scholar 

  • Wine, J.D.: Extending expansive homeomorphisms. Proc. Am. Math. Soc. 86(3), 531–534 (1982)

    Article  MathSciNet  Google Scholar 

  • Young, Lai Sang: Dimension, entropy and Lyapunov exponents. Ergod. Theory Dyn. Syst. 2(1), 109–124 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Condori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work partially supported by FAPEMIG (a Brazilian government agency; Universal Project 001/17/CEX-APQ-00352-17).

6 Appendix

6 Appendix

Proof (Proposition 1.1)

The second inequalities in (2) and (3) are obvious. The equalities in (2) and (3) are just Proposition 1.1 in Carvalho and Condori (2021b). A proof of the first inequality in (2) and the last inequality in (3) is presented in Rudnicki (2002). We provide the proof of the last inequality in (2) and of the first inequality in (3).

We begin proving that, for each \(q>1\), \(D_{\mu }^+(q)\le \mu -{\text {ess inf}}\overline{d}_\mu (x)\). For each \(\nu \in (0,1)\) and each \(\varepsilon >0\), set

$$\begin{aligned}A_\nu (\varepsilon )=\{x\in X\mid \mu (B(x,\varepsilon ))\ge \varepsilon ^{a+\nu }\}.\end{aligned}$$

It is easy to check that

$$\begin{aligned}A_\nu :=\liminf _{\varepsilon \downarrow 0}A_\nu (\varepsilon )\supset B_\nu :=\{x\in X\mid \overline{d}_\mu (x)\le a+\nu /2\}\,. \end{aligned}$$

It follows from the definition of \(\mu -{\text {ess inf}}\) that, for each \(\nu >0\), there exists \(\varepsilon _0>0\) such that, for each \(\varepsilon \in (0,\min \{\varepsilon _0,1\})\), \(2\mu (A_\nu (\varepsilon ))\ge \mu (A_\nu )\ge \mu (B_\nu )>0\). Now, for each \(\varepsilon \in (0,\min \{\varepsilon _0,1\})\), one has

$$\begin{aligned}I_\mu (q,\varepsilon )= & {} \int \mu (B(x,\varepsilon ))^{q-1}\, d\mu (x)\ge \int _{A_\nu (\varepsilon )}\mu (B(x,\varepsilon ))^{q-1}\,d\mu (x)\\\ge & {} \varepsilon ^{(q-1)(a+\nu )}\frac{\mu (A_\nu )}{2}\,,\end{aligned}$$

which yields \(D^+_\mu (q)\le a+\nu \). Since \(\nu >0\) is arbitrary, one gets \(D^+_\mu (q)\le \mu -{\text {ess inf}}\overline{d}_\mu (x)\).

The proof that, for each \(s\in (0,1)\), \(D_{\mu }^-(s)\ge \mu -{\text {ess sup}}\underline{d}_\mu (x)\) is completely analogous; namely, let \(\mathfrak {h}=\mu -{\text {ess sup}}\underline{d}_\mu (x)\), assume that \(\mathfrak {h}>0\) (otherwise, there is nothing to prove) and for each \(\nu \in (0,\mathfrak {h})\) and each \(\varepsilon >0\), set

$$\begin{aligned} \tilde{A}_\nu (\varepsilon ):=\{x\in X\mid \mu (B(x,\varepsilon ))\le \varepsilon ^{\mathfrak {h}-\nu }\}\,. \end{aligned}$$

Then,

$$\begin{aligned} \tilde{A}_\nu :=\liminf _{\varepsilon \downarrow 0}\tilde{A}_\nu (\varepsilon )\supset \tilde{B}_\nu :=\{x\in X\mid \underline{d}_\mu (x)\ge \mathfrak {h}-\nu /2\}\,, \end{aligned}$$

so for each \(\nu >0\), there exists \(\varepsilon _0>0\) such that, for each \(\varepsilon \in (0,\min \{\varepsilon _0,1\})\), \(2\mu (\tilde{A}_\nu (\varepsilon ))\ge \mu (\tilde{A}_\nu )\ge \mu (\tilde{B}_\nu )>0\). Now, for each \(\varepsilon \in (0,\min \{\varepsilon _0,1\})\), one has

$$\begin{aligned}I_\mu (s,\varepsilon )\ge \int _{\tilde{A}_\nu (\varepsilon )}\mu (B(x,\varepsilon ))^{s-1}\,d\mu (x)\ge \varepsilon ^{(s-1)(\mathfrak {h}-\nu )}\frac{\mu (\tilde{A}_\nu )}{2}\,,\end{aligned}$$

which yields \(D^-_\mu (s)\ge \mathfrak {h}-\nu \). Since \(\nu >0\) is arbitrary, one gets \(D^-_\mu (s)\ge \mu -{\text {ess sup}}\underline{d}_\mu (x)\). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Condori, A., Carvalho, S.L. A Note on the Relation Between the Metric Entropy and the Generalized Fractal Dimensions of Invariant Measures. Bull Braz Math Soc, New Series 53, 479–500 (2022). https://doi.org/10.1007/s00574-021-00266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-021-00266-5

Keywords

Navigation