Skip to main content

Advertisement

Log in

Catalytic stereoselective Mannich-type reactions for construction of fluorinated compounds

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

For its unique role in developing and designing new bioactive materials and healthcare products, fluoro-organic compounds have attracted remarkable interest. Along with ever-increasing demand for a wider availability of fluorine-containing structural units, a large diversity of methods has been introduced to incorporate fluorine atoms specially in a stereoselective fashion. Among them, catalytic Mannich reaction can proceed with a broad variety of reactants and open clear paths for the synthesis of versatile amine synthons in the synthesis of natural product and pharmaceutical molecules. This review provides an overview of the employment of catalytic asymmetric Mannich reactions in the synthesis of fluorine-containing amine compounds and highlights the conceivable distinct mechanisms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Scheme 88
Scheme 89
Scheme 90
Scheme 91
Scheme 92
Scheme 93

Similar content being viewed by others

References

  1. Cameron AG (1973) Abundances of the elements in the solar system. Space Sci Rev 15:121–146. https://doi.org/10.1007/BF00172440

    Article  CAS  Google Scholar 

  2. Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JAS, Toste FD (2018) Modern approaches for asymmetric construction of carbon–fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem Rev 118:3887–3964. https://doi.org/10.1021/acs.chemrev.7b00778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS (2017) Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem Rev 117:5619–5674. https://doi.org/10.1021/acs.chemrev.6b00571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhan C-G, Dixon DA (2004) Hydration of the fluoride anion: structures and absolute hydration free energy from first-principles electronic structure calculations. J Phys Chem A 108:2020–2029. https://doi.org/10.1021/jp0311512

    Article  CAS  Google Scholar 

  5. Maienfisch P, Hall RG (2004) The importance of fluorine in the life science industry. Chimia 58:93–99. https://doi.org/10.2533/000942904777678091

    Article  CAS  Google Scholar 

  6. Morgenthaler M, Schweizer E, Hoffmann-Röder A, Benini F, Martin RE, Jaeschke G, Wagner B, Fischer H, Bendels S, Zimmerli D (2007) Predicting and tuning physicochemical properties in lead optimization: amine basicities. Chem Med Chem Chem Enab Drug Dis 2:1100–1115. https://doi.org/10.1002/cmdc.200700059

    Article  CAS  Google Scholar 

  7. Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J (2011) Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem Soc Rev 40:3496–3508. https://doi.org/10.1039/C0CS00221F

    Article  CAS  PubMed  Google Scholar 

  8. Jones WE, Skolnik EG (1976) Reactions of fluorine atoms. Chem Rev 76:563–592. https://doi.org/10.1021/cr60303a002

    Article  CAS  Google Scholar 

  9. Chopra D (2012) Is organic fluorine really “not” polarizable? Cryst Growth Des 12:541–546. https://doi.org/10.1021/cg201498u

    Article  CAS  Google Scholar 

  10. Plenio H (2004) The coordination chemistry of fluorine in fluorocarbons. ChemBioChem 5:650–655. https://doi.org/10.1002/cbic.200300752

    Article  CAS  PubMed  Google Scholar 

  11. Treglia G, Kakhki VRD, Giovanella L, Sadeghi R (2013) Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in patients with Merkel cell carcinoma: a systematic review and meta-analysis. Am J Clin Dermatol 14:437–447. https://doi.org/10.1007/s40257-013-0040-x

    Article  PubMed  Google Scholar 

  12. Zhang W, Cai C (2008) New chemical and biological applications of fluorous technologies. Chem Commun 44:5686–5694. https://doi.org/10.1039/B812433

    Article  Google Scholar 

  13. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2013) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 114:2432–2506. https://doi.org/10.1021/cr4002879

    Article  CAS  PubMed  Google Scholar 

  14. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) Intermolecular interactions of the carbon-fluorine bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J Am Chem Soc 105:3206–3214. https://doi.org/10.1021/ja00348a041

    Article  CAS  Google Scholar 

  15. Becker H 1967) Organikum: organisch-chemisches Grundpraktikum, Deutscher Verlag der Wissenschaften

  16. Arend M, Westermann B, Risch N (1998) Modern variants of the Mannich reaction. Angew Chem Int Ed 37:1044–1070. https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8%3c1044::AID-ANIE1044%3e3.0.CO;2-E

    Article  Google Scholar 

  17. Aceña JL, Sorochinsky AE, Soloshonok VA (2012) Recent advances in the asymmetric synthesis of α-(trifluoromethyl)-containing α-amino acids. Synthesis 44:1591–1602. https://doi.org/10.1055/s-0031-1289756

    Article  CAS  Google Scholar 

  18. Kukhar VP, Sorochinsky AE, Soloshonok VA (2009) Practical synthesis of fluorine-containing α-and β-amino acids: recipes from Kiev, Ukraine. Future Med Chem 1:793–819. https://doi.org/10.4155/fmc.09.70

    Article  CAS  PubMed  Google Scholar 

  19. Mikami K, Fustero S, Sánchez-Roselló M, Aceña JL, Soloshonok V, Sorochinsky A (2011) Synthesis of fluorinated β-amino acids. Synthesis 2011:3045–3079. https://doi.org/10.1055/s-0030-1260173

    Article  CAS  Google Scholar 

  20. Bernardi L, Ricci A, Comes Franchini M (2011) Organocatalytic asymmetric mannich reactions in the preparation of enantioenriched β-amino acid derivatives. Curr Org Chem 15:2210–2226. https://doi.org/10.2174/138527211796150697

    Article  CAS  Google Scholar 

  21. Sumalatha Y, Reddy PP, Reddy R, Satyanarayana B (2009) Synthesis and spectral characterization of process-related substances to the hypnotic agent zolpidem. ARKIVOC 7:143–149. https://doi.org/10.3998/ark.5550190.0010.714

    Article  Google Scholar 

  22. Malinka W, Świątek P, Filipek B, Sapa J, Jezierska A, Koll A (2005) Synthesis, analgesic activity and computational study of new isothiazolopyridines of Mannich base type. Farmaco 60(11–12):961–968. https://doi.org/10.1016/j.farmac.2005.08.005

    Article  CAS  PubMed  Google Scholar 

  23. Martin SF, Bur SK (1999) Vinylogous Mannich reactions. Stereoselective formal synthesis of pumiliotoxin 251D. Tetrahedron 55(29):8905–8914. https://doi.org/10.1016/S0040-4020(99)00452-4

    Article  CAS  Google Scholar 

  24. Farooq S, Haq I-U, Ullah N (2021) Synthesis, characterization and biological evaluation of N-Mannich base derivatives of 2-phenyl-2-imidazoline as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents. Arab J Chem 14(4):103050. https://doi.org/10.1016/j.arabjc.2021.103050

    Article  CAS  Google Scholar 

  25. Subramaniapillai SG (2013) Mannich reaction: a versatile and convenient approach to bioactive skeletons. J Chem Sci 125(3):467–482. https://doi.org/10.1007/s12039-013-0405-y

    Article  CAS  Google Scholar 

  26. Allochio Filho JF, Lemos BC, de Souza AS, Pinheiro S, Greco SJ (2017) Multicomponent Mannich reactions: general aspects, methodologies and applications. Tetrahedron 73(50):6977–7004. https://doi.org/10.1016/j.tet.2017.10.063

    Article  CAS  Google Scholar 

  27. Biersack B, Ahmed K, Padhye S, Schobert R (2018) Recent developments concerning the application of the Mannich reaction for drug design. Expert Opin Drug Discov 13:39–49. https://doi.org/10.1080/17460441.2018.1403420

    Article  CAS  PubMed  Google Scholar 

  28. Roselló MS, del Pozo C, Fustero S (2016) A decade of advance in the asymmetric vinylogous mannich reaction. Synthesis 48:2553–2571. https://doi.org/10.1055/s-0035-1561650

    Article  Google Scholar 

  29. Chu E, Callender MA, Farrell MP, Schmitz JC (2003) Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemoth Pharm 52:80–89. https://doi.org/10.1007/s00280-003-0625-9

    Article  CAS  Google Scholar 

  30. Uoto K, Takenoshita H, Yoshino T, Hirota Y, Ando S, Mitsui I, Terasawa H, Soga T (1998) Synthesis and evaluation of water-soluble non-prodrug analogs of docetaxel bearing sec-aminoethyl group at the C-10 position. Chem Pharm Bull 46:770–776. https://doi.org/10.1248/cpb.46.770

    Article  CAS  Google Scholar 

  31. Palomo C, Oiarbide M, Landa A, González-Rego MC, García JM, González A, Odriozola JM, Martín-Pastor M, Linden A (2002) Design and synthesis of a novel class of sugar-peptide hybrids: C-linked glyco β-amino acids through a stereoselective “acetate” Mannich reaction as the key strategic element. J Am Chem Soc 124:8637–8643. https://doi.org/10.1021/ja026250s

    Article  CAS  PubMed  Google Scholar 

  32. Kober R, Papadopoulos K, Miltz W, Enders D, Steglich W, Reuter H, Puff H (1985) Synthesis of diastereo-and enantiomerically pure α-amino-γ-oxo acid esters by reaction of acyliminoacetates with enamines derived from 6-membered ketones. Tetrahedron 41:1693–1701. https://doi.org/10.1016/S0040-4020(01)96483-X

    Article  CAS  Google Scholar 

  33. Evans DA, Urpi F, Somers TC, Clark JS, Bilodeau MT (1990) New procedure for the direct generation of titanium enolates. Diastereoselective bond constructions with representative electrophiles. J Am Chem Soc 112:8215–8216. https://doi.org/10.1021/ja00178a082

    Article  CAS  Google Scholar 

  34. Pellissier HLN (2016) Enantioselective silver-catalyzed transformations. Chem Rev 116:14868–14917. https://doi.org/10.1021/acs.chemrev.6b00639

    Article  CAS  PubMed  Google Scholar 

  35. Shibuguchi T, Mihara H, Kuramochi A, Ohshima T, Shibasaki M (2007) Catalytic asymmetric phase-transfer michael reaction and mannich-type reaction of glycine schiff bases with tartrate-derived diammonium salts. Chem Asian J 2:794–801. https://doi.org/10.1002/asia.200700070

    Article  CAS  PubMed  Google Scholar 

  36. Saranya S, Harry NA, Krishnan KK, Anilkumar G (2018) Recent developments and perspectives in the asymmetric Mannich reaction. Asian J Org Chem 7:613–633. https://doi.org/10.1002/ajoc.201700679

    Article  CAS  Google Scholar 

  37. Cheng DJ, Shao YD (2019) Advances in the Organocatalytic asymmetric mannich reaction of six-membered unsaturated heterocycles: methodology and application. ChemCatChem 11:2575–2589. https://doi.org/10.1002/cctc.201900379

    Article  CAS  Google Scholar 

  38. Reddy PP, Chu C-Y, Hwang D-R, Wang S-K, Uang B-J (2003) Recent advances in the oxovanadium mediated biaryl coupling and modified Mannich-type reaction. Coord Chem Rev 237:257–269. https://doi.org/10.1016/S0010-8545(02)00225-4

    Article  CAS  Google Scholar 

  39. Wee LH, Alaerts L, Martens JA, De Vos D (2011) Metal–organic frameworks as catalysts for organic reactions. Metal Org Frameworks Appl Catal Gas Storage, pp 191–212. Doi: https://doi.org/10.1002/9783527635856.ch9

  40. MaGee DI, Dabiri M, Salehi P, Torkian L (2011) Highly efficient one-pot three-component Mannich reaction catalyzed by ZnO-nanoparticles in water. ARKIVOC 11:156–164. https://doi.org/10.3998/ark.5550190.0012.b14

    Article  Google Scholar 

  41. Valero G, Companyo X, Bravo N, Alba A-NR, Moyano A, Rios R (2010) Searching for untrodden paths in organocatalysis territory. Synlett 2010:1883–1908. https://doi.org/10.1055/s-0030-1257988

    Article  CAS  Google Scholar 

  42. Manabe K, Kobayashi S (1999) Mannich-type reactions of aldehydes, amines, and ketones in a colloidal dispersion system created by a Brønsted acid−surfactant-combined catalyst in water. Org Lett 1:1965–1967. https://doi.org/10.1021/ol991113u

    Article  CAS  Google Scholar 

  43. List B (2000) The direct catalytic asymmetric three-component Mannich reaction. J Am Chem Soc 122:9336–9337. https://doi.org/10.1021/acs.joc.0c00031

    Article  CAS  Google Scholar 

  44. List B (2001) Asymmetric aminocatalysis. Synlett 2001:1675–1686. https://doi.org/10.1055/s-2001-18074

    Article  Google Scholar 

  45. List B, Pojarliev P, Biller WT, Martin HJ (2002) The proline-catalyzed direct asymmetric three-component Mannich reaction: scope, optimization, and application to the highly enantioselective synthesis of 1, 2-amino alcohols. J Am Chem Soc 124:827–833. https://doi.org/10.1021/ja0174231

    Article  CAS  PubMed  Google Scholar 

  46. Jiang Z, Pan Y, Zhao Y, Ma T, Lee R, Yang Y, Huang KW, Wong MW, Tan CH (2009) Synthesis of a chiral quaternary carbon center bearing a fluorine atom: enantio-and diastereoselective guanidine-catalyzed addition of fluorocarbon nucleophiles. Angew Chem, Int Ed 48:3627–3631. https://doi.org/10.1002/anie.200900964

    Article  CAS  Google Scholar 

  47. Pan Y, Zhao Y, Ma T, Yang Y, Liu H, Jiang Z, Tan CH (2010) Enantioselective synthesis of α-fluorinated β-amino acid derivatives by an asymmetric mannich reaction and selective deacylation/decarboxylation reactions. Chem Eur J 16:779–782. https://doi.org/10.1002/chem.200902830

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Y, Pan Y, Liu H, Yang Y, Jiang Z, Tan CH (2011) Fluorinated aromatic ketones as nucleophiles in the asymmetric organocatalytic formation of C–C and C–N Bonds: a facile route to the construction of fluorinated quaternary stereogenic centers. Chem Eur J 17:3571–3574. https://doi.org/10.1002/chem.201003761

    Article  CAS  PubMed  Google Scholar 

  49. Cosimi E, Engl OD, Saadi J, Ebert MO, Wennemers H (2016) Stereoselective organocatalyzed synthesis of α-fluorinated β-amino thioesters and their application in peptide synthesis. Angew Chem Int Ed 128:13321–13325. https://doi.org/10.1002/ange.201607146

    Article  Google Scholar 

  50. Li BY, Du DM (2018) Chiral squaramide-catalyzed asymmetric mannich reactions for synthesis of fluorinated 3, 3′-bisoxindoles. Adv Synth Catal 360:3164–3170. https://doi.org/10.1002/adsc.201800513

    Article  CAS  Google Scholar 

  51. Zhang Q-D, Zhao B-L, Li B-Y, Du D-M (2019) Squaramide-catalyzed asymmetric Mannich reactions between 3-fluorooxindoles and pyrazolinone ketimines. Org Biomol Chem 17:7182–7191. https://doi.org/10.1039/C9OB01350D

    Article  CAS  PubMed  Google Scholar 

  52. Doyle AG, Jacobsen EN (2007) Small-molecule H-bond donors in asymmetric catalysis. Chem Rev 107:5713–5743. https://doi.org/10.1021/cr068373r

    Article  CAS  PubMed  Google Scholar 

  53. Zhu Q, Lu Y (2010) Stereocontrolled creation of all-carbon quaternary stereocenters by organocatalytic conjugate addition of oxindoles to vinyl sulfone. Angew Chem Int Ed 49:7753–7756. https://doi.org/10.1002/anie.201003837

    Article  CAS  Google Scholar 

  54. Han X, Kwiatkowski J, Xue F, Huang KW, Lu Y (2009) Asymmetric Mannich reaction of fluorinated ketoesters with a tryptophan-derived bifunctional thiourea catalyst. Angew Chem, Int Ed 48:7604–7607. https://doi.org/10.1002/anie.200903635

    Article  CAS  Google Scholar 

  55. Yoon SJ, Kang YK, Kim DY (2011) Organocatalytic enantioselective mannich-type reactions of fluorinated keto esters with N-Boc-aldimines. Synlett 2011:420–424. https://doi.org/10.1055/s-0030-1259319

    Article  CAS  Google Scholar 

  56. Kang Y-K, Yoon S-J, Kim D-Y (2011) Asymmetric Mannich-type reactions of fluorinated ketoesters with binaphthyl-modified thiourea catalysts. Bull Korean Chem Soc 32:1195–1200. https://doi.org/10.5012/bkcs.2011.32.4.1195

    Article  CAS  Google Scholar 

  57. Lee JH, Kim DY (2010) Organocatalytic highly enantioselective mannich-type reactions of fluoromalonate with N-Boc-aldimines. Synthesis 2010:1860–1864. https://doi.org/10.1055/s-0029-1218736

    Article  CAS  Google Scholar 

  58. Wang HY, Zhang K, Zheng CW, Chai Z, Cao DD, Zhang JX, Zhao G (2015) Asymmetric dual-reagent catalysis: mannich-type reactions catalyzed by ion pair. Angew Chem Int Ed 127:1795–1799. https://doi.org/10.1002/ange.201409342

    Article  Google Scholar 

  59. Ji S, Alkhalil AE, Su Y, Xia X, Chong S, Wang K-H, Huang D, Fu Y, Hu Y (2015) Bifunctional thiourea catalyzed asymmetric Mannich reaction using trifluoromethyl aldimine as trifluoromethyl building blocks. Synlett 26:1725–1731. https://doi.org/10.1055/s-0034-1380693

    Article  CAS  Google Scholar 

  60. Sawa M, Morisaki K, Kondo Y, Morimoto H, Ohshima T (2017) Direct Access to N-unprotected α-and/or β-tetrasubstituted amino acid esters via direct catalytic mannich-type reactions using N-unprotected trifluoromethyl ketimines. Chem Eur J 23:17022–17028. https://doi.org/10.1002/chem.201703516

    Article  CAS  PubMed  Google Scholar 

  61. Li B-Y, Lin Y, Du D-M (2019) Organocatalytic asymmetric mannich addition of 3-fluorooxindoles to dibenzo [b, f][1, 4] oxazepines: highly enantioselective construction of tetrasubstituted C–F stereocenters. J Org Chem 84:11752–11762. https://doi.org/10.1021/acs.joc.9b01507

    Article  CAS  PubMed  Google Scholar 

  62. Straub MR, Birman VB (2018) Organocatalytic enantioselective synthesis of α-fluoro-β-amino acid derivatives. Org Lett 20:7550–7553. https://doi.org/10.1021/acs.orglett.8b03297

    Article  CAS  PubMed  Google Scholar 

  63. Yu J-S, Zhou J (2016) Organocatalytic enantioselective Mukaiyama-Mannich reaction of fluorinated enol silyl ethers and cyclic N-sulfonyl ketimines. Org Chem Front 3:298–303. https://doi.org/10.1039/C5QO00407A

    Article  CAS  Google Scholar 

  64. Mizuta S, Shibata N, Goto Y, Furukawa T, Nakamura S, Toru T (2007) Cinchona alkaloid-catalyzed enantioselective monofluoromethylation reaction based on fluorobis (phenylsulfonyl) methane chemistry combined with a Mannich-type reaction. J Am Chem Soc 129:6394–6395. https://doi.org/10.1021/ja071509y

    Article  CAS  PubMed  Google Scholar 

  65. Urban M, Franc M, Hofmanová M, Císařová I, Veselý J (2017) The enantioselective addition of 1-fluoro-1-nitro (phenylsulfonyl) methane to isatin-derived ketimines. Org Biomol Chem 15:9071–9076. https://doi.org/10.1039/C7OB02408H

    Article  CAS  PubMed  Google Scholar 

  66. Zheng B-Q, Chen L-Y, Zhao J-B, Ji J, Qiu Z-B, Ren X, Li Y (2018) Organocatalytic asymmetric syntheses of 3-fluorooxindoles containing vicinal fluoroamine motifs. Org Biomol Chem 16:8989–8993. https://doi.org/10.1039/C8OB01786G

    Article  CAS  PubMed  Google Scholar 

  67. Zhao J, Li Y, Chen L-Y, Ren X (2019) Enantioselective mannich reactions of 3-fluorooxindoles with cyclic N-sulfamidate aldimines. J Org Chem 84:5099–5108. https://doi.org/10.1021/acs.joc.9b00007

    Article  CAS  PubMed  Google Scholar 

  68. Fustero S, Jiménez D, Sanz-Cervera JF, Sánchez-Roselló M, Esteban E, Simón-Fuentes A (2005) Highly enantioselective synthesis of fluorinated γ-amino alcohols through proline-catalyzed cross-Mannich reaction. Org Lett 7:3433–3436. https://doi.org/10.1021/ol050791f

    Article  CAS  PubMed  Google Scholar 

  69. Sukach VA, Golovach NM, Melnichenko NV, Tsymbal IF, Vovk MV (2008) Optically active 4-amino-4-aryl-5, 5, 5-trifluoropentan-2-ones: Versatile reagents for synthesis of chiral 4-trifluoromethyl-3, 4-dihydroazin-2-ones. J Fluor Chem 129:1180–1186. https://doi.org/10.1016/j.jfluchem.2008.09.003

    Article  CAS  Google Scholar 

  70. Golovach N, Tkachuk V, Sukach V, Vovk M (2012) Asymmetric organocatalytic mannich reaction of 1-aryl-2, 2, 2-trifluoroethylidenecarbamic acid derivatives with acetone. Russ J Org 48:1187–1190. https://doi.org/10.1134/S1070428012090060

    Article  CAS  Google Scholar 

  71. Sukach VA, Tkachuk VM, Shoba VM, Pirozhenko VV, Rusanov EB, Chekotilo AA, Röschenthaler GV, Vovk MV (2014) Control of regio-and enantioselectivity in the asymmetric organocatalytic addition of acetone to 4-(trifluoromethyl) pyrimidin-2 (1H)-ones. Eur J Org Chem 2014:1452–1460. https://doi.org/10.1002/ejoc.201301542

    Article  CAS  Google Scholar 

  72. Rassukana YV, Yelenich IP, Vlasenko YG, Onys’ko P P, (2014) Asymmetric synthesis of phosphonotrifluoroalanine derivatives via proline-catalyzed direct enantioselective CC bond formation reactions of NH trifluoroacetimidoyl phosphonate. Tetrahedron Asymm 25:1234–1238. https://doi.org/10.1016/j.tetasy.2014.07.007

    Article  CAS  Google Scholar 

  73. Rassukana YV, StankoOnys’ko OVPP (2019) Enantiomeric O, O-dimenthyl α-iminotrifluoroethylphosphonates: novel chiral building blocks in asymmetric synthesis of α-trifluoromethylated α-aminophosphonic acid derivatives. J Fluor Chem 219:123–128. https://doi.org/10.1016/j.jfluchem.2019.01.007

    Article  CAS  Google Scholar 

  74. Fioravanti S, Parise L, Pelagalli A, Pellacani L, Trulli L (2015) Trifluoromethyl syn-or anti-γ-amino alcohols by one-pot solvent-free Mannich-type reactions under temperature control. RSC Adv 5:29312–29318. https://doi.org/10.1039/C5RA01791B

    Article  CAS  Google Scholar 

  75. Pelagalli A, Pellacani L, Fioravanti S (2017) In Pursuit of β-Amino-α-nitro-β-(trifluoromethyl) Ketones: nitro-Mannich versus Mannich-type reactions. Eur J Org Chem 2017:3373–3380. https://doi.org/10.1002/ejoc.201700510

    Article  CAS  Google Scholar 

  76. Fustero S, Mojarrad F, Carrión MDP, Sanz-Cervera JF, Aceña JL (2009) Organocatalytic anti-Selective Mannich Reactions with fluorinated aldimines: synthesis of anti-γ-fluoroalkyl-γ-amino alcohols. Eur J Org Chem 2009:5208–5214. https://doi.org/10.1002/ejoc.200900509

    Article  CAS  Google Scholar 

  77. Nakayama K, Kawato HC, Inagaki H, Nakajima R, Kitamura A, Someya K, Ohta T (2000) Synthesis and antifungal activity of rhodopeptin analogues. 2. Modification of the west amino acid moiety. Org Lett 2:977–980. https://doi.org/10.1021/ol005630k

    Article  CAS  PubMed  Google Scholar 

  78. Hook DF, Gessier F, Noti C, Kast P, Seebach D (2004) Probing the proteolytic stability of β-peptides containing α-fluoro-and α-hydroxy-β-amino acids. ChemBioChem 5:691–706. https://doi.org/10.1002/cbic.200300827

    Article  CAS  PubMed  Google Scholar 

  79. Oishi S, Kamitani H, Kodera Y, Watanabe K, Kobayashi K, Narumi T, Tomita K, Ohno H, Naito T, Kodama E (2009) Peptide bond mimicry by (E)-alkene and (Z)-fluoroalkene peptide isosteres: synthesis and bioevaluation of α-helical anti-HIV peptide analogues. Org Biomol Chem 7:2872–2877. https://doi.org/10.1039/B907983A

    Article  CAS  PubMed  Google Scholar 

  80. Christianson CV, Montavon TJ, Festin GM, Cooke HA, Shen B, Bruner SD (2007) The mechanism of MIO-based aminomutases in β-amino acid biosynthesis. J Am Chem Soc 129:15744–15745. https://doi.org/10.1021/ja0762689

    Article  CAS  PubMed  Google Scholar 

  81. Niida A, Tomita K, Mizumoto M, Tanigaki H, Terada T, Oishi S, Otaka A, Inui K-i, Fujii N (2006) Unequivocal synthesis of (Z)-alkene and (E)-fluoroalkene dipeptide isosteres to probe structural requirements of the peptide transporter PEPT1. Org Lett 8:613–616. https://doi.org/10.1021/ol052781k

    Article  CAS  PubMed  Google Scholar 

  82. Jonet S, Cherouvrier F, Brigaud T, Portella C (2005) Mild Synthesis of β-amino-α, α-difluoro ketones from acylsilanes and trifluoromethyltrimethylsilane in a one-pot imino aldol reaction. Eur J Org Chem 2005:4304–4312. https://doi.org/10.1002/ejoc.200500106

    Article  CAS  Google Scholar 

  83. Kashikura W, Mori K, Akiyama T (2011) Chiral phosphoric acid catalyzed enantioselective synthesis of β-amino-α, α-difluoro carbonyl compounds. Org Lett 13:1860–1863. https://doi.org/10.1021/ol200374m

    Article  CAS  PubMed  Google Scholar 

  84. Li J-S, Liu Y-J, Zhang G-W, Ma J-A (2017) Catalytic asymmetric mukaiyama–mannich reaction of cyclic C-acylimines with difluoroenoxysilanes: access to difluoroalkylated Indolin-3-ones. Org Lett 19:6364–6367. https://doi.org/10.1021/acs.orglett.7b03213

    Article  CAS  PubMed  Google Scholar 

  85. Wang L, Zhong J, Lin X (2020) Enantioselective synthesis of difluoroalkylated isoindolinones via chiral spirocyclic phosphoric acid-catalyzed mannich-type reaction. Synlett 32:417–422. https://doi.org/10.1055/a-1274-2959

    Article  CAS  Google Scholar 

  86. Xu L, Wang H, Zheng C, Zhao G (2017) Enantioselective Mannich-type reactions to construct trifluoromethylthio-containing tetrasubstituted carbon stereocenters via asymmetric dual-reagent catalysis. Adv Synth Catal 359:2942–2948. https://doi.org/10.1002/adsc.201700321

    Article  CAS  Google Scholar 

  87. Xu L, Yu L, Liu J, Wang H, Zheng C, Zhao G (2020) Enantioselective vinylogous Mannich-type reactions to construct CF3S-containing stereocenters catalysed by chiral quaternary phosphonium salts. Adv Synth Catal 362:1851–1857. https://doi.org/10.1002/adsc.201901621

    Article  CAS  Google Scholar 

  88. Zhang S, Li L, Hu Y, Li Y, Yang Y, Zha Z, Wang Z (2015) Highly enantioselective construction of fluoroalkylated quaternary stereocenters via organocatalytic dehydrated Mannich reaction of unprotected hemiaminals with ketones. Org Lett 17:5036–5039. https://doi.org/10.1021/acs.orglett.5b02514

    Article  CAS  PubMed  Google Scholar 

  89. Kwiatkowski J, Lu Y (2014) Asymmetric Michael addition of α-fluoro-α-nitroalkanes to nitroolefins: facile preparation of fluorinated amines and tetrahydropyrimidines. Chem Commun 50:9313–9316. https://doi.org/10.1039/C4CC03513E

    Article  CAS  Google Scholar 

  90. Kwiatkowski J, Lu Y (2015) Asymmetric Michael addition of α-fluoro-α-nitro esters to nitroolefins: towards synthesis of α-fluoro-α-substituted amino acids. Org Biomol Chem 13:2350–2359. https://doi.org/10.1039/C4OB02486A

    Article  CAS  PubMed  Google Scholar 

  91. Vara BA, Johnston JN (2016) Enantioselective synthesis of β-fluoro amines via β-amino α-fluoro nitroalkanes and a traceless activating group strategy. J Am Chem Soc 138:13794–13797. https://doi.org/10.1021/jacs.6b07731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. You Y, e, Luo S, (2018) Catalytic asymmetric mannich type reaction with tri-/difluoro-or trichloroacetaldimine precursors. Org Lett 20:7137–7140. https://doi.org/10.1021/acs.orglett.8b03083

    Article  CAS  PubMed  Google Scholar 

  93. Moskowitz M, Balaraman K, Wolf C (2018) Organocatalytic stereoselective synthesis of fluorinated 3, 3′-linked bisoxindoles. J Org Chem 83:1661–1666. https://doi.org/10.1021/acs.joc.7b03084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Utsumi N, Kitagaki S, Barbas IIICF (2008) Organocatalytic Mannich-type reactions of trifluoroethyl thioesters. Org Lett 10:3405–3408. https://doi.org/10.1021/ol801207x

    Article  CAS  PubMed  Google Scholar 

  95. Kutovaya IV, Shmatova OI, Nenajdenko VG (2018) Aza-Henry reaction with trifluoropiruvate ketimines. Mendeleev Commun 28:133–134. https://doi.org/10.1016/j.mencom.2018.03.006

    Article  CAS  Google Scholar 

  96. Karimi B, Enders D, Jafari E (2013) Recent advances in metal-catalyzed asymmetric Mannich reactions. Synthesis 45:2769–2812. https://doi.org/10.1055/s-0033-1339479

    Article  CAS  Google Scholar 

  97. Kobayashi S, Ueno M, Saito S, Mizuki Y, Ishitani H, Yamashita Y (2004) Air-stable, storable, and highly efficient chiral zirconium catalysts for enantioselective Mannich-type, aza Diels-Alder, aldol, and hetero Diels-Alder reactions. Proc Natl Acad Sci 101:5476–5481. https://doi.org/10.1073/pnas.0307870101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ishitani H, Ueno M, Kobayashi S (2000) Enantioselective mannich-type reactions using a novel chiral zirconium catalyst for the synthesis of optically active β-amino acid derivatives. J Am Chem Soc 122:8180–8186. https://doi.org/10.1021/ja001642p

    Article  CAS  Google Scholar 

  99. Yin L, Brewitz L, Kumagai N, Shibasaki M (2014) Catalytic generation of α-CF3 enolate: direct catalytic asymmetric Mannich-type reaction of α-CF3 amide. J Am Chem Soc 136:17958–17961. https://doi.org/10.1021/ja511458k

    Article  CAS  PubMed  Google Scholar 

  100. Brewitz L, Arteaga FA, Yin L, Alagiri K, Kumagai N, Shibasaki M (2015) Direct catalytic asymmetric Mannich-type reaction of α-and β-fluorinated amides. J Am Chem Soc 137:15929–15939. https://doi.org/10.1021/jacs.5b11064

    Article  CAS  PubMed  Google Scholar 

  101. Brewitz L, Kumagai N, Shibasaki M (2017) Catalytic asymmetric synthesis of 2, 3, 3, 3-tetrafluoro-2-methyl-1-arylpropan-1-amines as useful building blocks for SAR-studies. J Fluor Chem 194:1–7. https://doi.org/10.1016/j.jfluchem.2016.12.008

    Article  CAS  Google Scholar 

  102. Sun B, Balaji PV, Kumagai N, Shibasaki M (2017) α-Halo amides as competent latent enolates: direct catalytic asymmetric Mannich-type reaction. J Am Chem Soc 139:8295–8301. https://doi.org/10.1021/jacs.7b03291

    Article  CAS  PubMed  Google Scholar 

  103. Yu J-S, Noda H, Kumagai N, Shibasaki M (2019) Direct catalytic asymmetric mannich-type reaction of an α-cf3 amide to isatin imines. Synlett 30:488–492. https://doi.org/10.1055/s-0037-1611642

    Article  CAS  Google Scholar 

  104. Schreiner PR (2003) Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem Soc Rev 32:289–296. https://doi.org/10.1039/B107298F

    Article  CAS  PubMed  Google Scholar 

  105. Taylor MS, Jacobsen EN (2006) Asymmetric catalysis by chiral hydrogen-bond donors. Angew Chem, Int Ed 45:1520–1543. https://doi.org/10.1002/anie.200503132

    Article  CAS  Google Scholar 

  106. Miyabe H, Takemoto Y (2008) Asymmetric organocatalysis asymmetric organocatalysis, 2004. Bull Chem Soc Jpn 81:785–795. https://doi.org/10.1246/bcsj.81.785

    Article  CAS  Google Scholar 

  107. Zhao C, Seidel D (2015) Enantioselective A3 reactions of secondary amines with a Cu (I)/acid–thiourea catalyst combination. J Am Chem Soc 137:4650–4653. https://doi.org/10.1021/jacs.5b02071

    Article  CAS  PubMed  Google Scholar 

  108. Hong L, Sun W, Yang D, Li G, Wang R (2016) Additive effects on asymmetric catalysis. Chem Rev 116:4006–4123. https://doi.org/10.1021/acs.chemrev.5b00676

    Article  CAS  PubMed  Google Scholar 

  109. Vogl EM, Gröger H, Shibasaki M (1999) Towards perfect asymmetric catalysis: Additives and cocatalysts. Angew Chem Int Ed 38:1570–1577. https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11%3c1570::AID-ANIE1570%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  110. Balaji PV, Brewitz L, Kumagai N, Shibasaki M (2019) Achiral trisubstituted thioureas as secondary ligands to cui catalysts: direct catalytic asymmetric addition of α-fluoronitriles to imines. Angew Chem Int Ed 58:2644–2648. https://doi.org/10.1002/anie.201812673

    Article  CAS  Google Scholar 

  111. Zhong F, Yue W-J, Zhang H-J, Zhang C-Y, Yin L (2018) Catalytic asymmetric construction of halogenated stereogenic carbon centers by direct vinylogous Mannich-type reaction. J Am Chem Soc 140:15170–15175. https://doi.org/10.1021/jacs.8b09484

    Article  CAS  PubMed  Google Scholar 

  112. Ding R, De los Santos Z A, Wolf C, (2019) Catalytic asymmetric mannich reaction of α-fluoronitriles with ketimines: enantioselective and diastereodivergent construction of vicinal tetrasubstituted stereocenters. ACS Catal 9:2169–2176. https://doi.org/10.1021/acscatal.8b05164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu X, Zhang J, Zhao L, Ma S, Yang D, Yan W, Wang R (2015) Construction of vicinal tetrasubstituted stereocenters with a C–F bond through a catalytic enantioselective detrifluoroacetylative Mannich reaction. J Org Chem 80:12651–12658. https://doi.org/10.1021/acs.joc.5b02238

    Article  CAS  PubMed  Google Scholar 

  114. Shmatova OI, Nenajdenko VG (2019) Diastereoselective vinylogous Mannich reaction of perfluoroalkylated cyclic imines with 2-trimethylsilyloxyfuran. Mendeleev Commun 29:57–58. https://doi.org/10.1016/j.mencom.2019.01.018

    Article  CAS  Google Scholar 

  115. Pham K, Huang X, Zhang W (2015) One-pot fluorination and Mannich reactions of 1, 3-dicarbonyl compounds. Tetrahedron Lett 56:1998–2000. https://doi.org/10.1016/j.tetlet.2015.02.117

    Article  CAS  Google Scholar 

  116. Trost BM, Saget T, Lerchen A, Hung CI (2016) Catalytic asymmetric mannich reactions with fluorinated aromatic ketones: efficient access to chiral β-fluoroamines. Angew Chem, Int Ed 55:781–784. https://doi.org/10.1002/anie.201509719

    Article  CAS  Google Scholar 

  117. Trost BM, Michaelis DJ, Truica MI (2013) Dinuclear zinc–prophenol-catalyzed enantioselective α-hydroxyacetate aldol reaction with activated ester equivalents. Org Lett 15:4516–4519. https://doi.org/10.1021/ol402081p

    Article  CAS  PubMed  Google Scholar 

  118. Trost BM, Jaratjaroonphong J, Reutrakul V (2006) A direct catalytic asymmetric mannich-type reaction via a dinuclear zinc catalyst: synthesis of either anti-or s yn-α-hydroxy-β-amino ketones. J Am Chem Soc 128:2778–2779. https://doi.org/10.1021/ja057498v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Trost BM, Ito H, Silcoff ER (2001) Asymmetric aldol reaction via a dinuclear zinc catalyst: α-hydroxyketones as donors. J Am Chem Soc 123:3367–3368. https://doi.org/10.1021/ja003871h

    Article  CAS  PubMed  Google Scholar 

  120. Trost B, Tracy J, Saget T (2018) Direct catalytic enantioselective amination of ketones for the formation of tri-and tetrasubstituted stereocenters. Chem Sci 9:2975–2980. https://doi.org/10.1039/C8SC00147B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Trost BM, Gnanamani E, Tracy JS, Kalnmals CA (2017) Zn-prophenol catalyzed enantio-and diastereoselective direct vinylogous mannich reactions between α, β-and β, γ-butenolides and aldimines. J Am Chem Soc 139:18198–18201. https://doi.org/10.1021/jacs.7b11361

    Article  CAS  PubMed  Google Scholar 

  122. Trost BM, Saget T, Hung CI (2017) Efficient access to chiral trisubstituted aziridines via catalytic enantioselective aza-darzens reactions. Angew Chem, Int Ed 56:2440–2444. https://doi.org/10.1002/anie.201607845

    Article  CAS  Google Scholar 

  123. Trost BM, Hung CI, Scharf MJ (2018) Direct catalytic asymmetric vinylogous additions of α, β-and β, γ-butenolides to polyfluorinated alkynyl ketimines. Angew Chem Int Ed 130:11578–11582. https://doi.org/10.1002/ange.201806249

    Article  Google Scholar 

  124. Trost BM, Tracy JS, Yusoontorn T, Hung CIJ (2020) Acyclic branched α-fluoro ketones for the direct asymmetric Mannich reaction leading to the synthesis of β-tetrasubstituted β-fluoro amines. Angew Chem Int Ed 132:2390–2394. https://doi.org/10.1002/ange.201913927

    Article  Google Scholar 

  125. Trost BM, Hung C-IJ, Mata G, Liu Y, Lu Y, Gnanamani E (2020) Direct enantio-and diastereoselective zn-prophenol-catalyzed Mannich reactions of CF3-and SCF3-substituted ketones. Org Lett 22:2437–2441. https://doi.org/10.1021/acs.orglett.0c00646

    Article  CAS  PubMed  Google Scholar 

  126. Yi Y, Hua Y-Z, Lu H-J, Liu L-T, Wang M-C (2020) Brønsted base and lewis acid cooperatively catalyzed asymmetric exo′-selective [3+ 2] cycloaddition of trifluoromethylated azomethine ylides and methyleneindolinones. Org Lett 22:2527–2531. https://doi.org/10.1021/acs.orglett.0c00283

    Article  CAS  PubMed  Google Scholar 

  127. Yuan Z, Mei L, Wei Y, Shi M, Kattamuri PV, McDowell P, Li G (2012) Asymmetric catalytic Mannich-type reaction of hydrazones with difluoroenoxysilanes using imidazoline-anchored phosphine ligand–zinc (II) complexes. Org Biomol Chem 10:2509–2513. https://doi.org/10.1039/C2OB07022G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. You S-L, Kelly JW (2004) Highly efficient enantiospecific synthesis of imidazoline-containing amino acids using bis (triphenyl) oxodiphosphonium trifluoromethanesulfonate. Org Lett 6:1681–1683. https://doi.org/10.1021/ol049439c

    Article  CAS  PubMed  Google Scholar 

  129. Liu H, Du DM (2010) Development of diphenylamine-linked bis (imidazoline) ligands and their application in asymmetric friedel-crafts alkylation of indole derivatives with nitroalkenes. Adv Synth Catal 352:1113–1118. https://doi.org/10.1002/adsc.201000111

    Article  CAS  Google Scholar 

  130. Yuan Z, Wei Y, Shi M (2010) Zinc (II)-Catalyzed Mannich-type reactions of hydrazones with difluoroenoxysilane and its application in the synthesis of optically active 2, 2-difluoro-3-oxo-benzohydrazide. Chin J Chem 28:1709–1716. https://doi.org/10.1002/cjoc.201090289

    Article  CAS  Google Scholar 

  131. Liu H, Du DM (2009) Recent advances in the synthesis of 2-imidazolines and their applications in homogeneous catalysis. Adv Synth Catal 351:489–519. https://doi.org/10.1002/adsc.200800797

    Article  CAS  Google Scholar 

  132. Fioravanti S, Pellacani L, Vergari MC (2012) Fluorinated β-nitro amines by a selective ZrCl 4-catalyzed aza-Henry reaction of (E)-trifluoromethyl aldimines. Org Biomol Chem 10:8207–8210. https://doi.org/10.1039/C2OB26397A

    Article  CAS  PubMed  Google Scholar 

  133. Fioravanti S, Pelagalli A, Pellacani L, Sciubba F, Vergari MC (2014) Trifluoromethyl-modified dipeptides by ZrCl 4-promoted aza-Henry reactions. Amino Acids 46:1961–1970. https://doi.org/10.1007/s00726-014-1749-4

    Article  CAS  PubMed  Google Scholar 

  134. Parise L, Pellacani L, Sciubba F, Trulli L, Fioravanti S (2015) Stereoselective ZrCl4-catalyzed mannich-type reaction of β-keto esters with chiral trifluoromethyl aldimines. J Org Chem 80:8300–8306. https://doi.org/10.1021/acs.joc.5b01379

    Article  CAS  PubMed  Google Scholar 

  135. Yue X, Zhang X, Qing F-L (2008) Highly diastereoselective Zn/SnCl2-mediated gem-difluoroallylation of chiral hydrazones. Org Lett 11:73–76. https://doi.org/10.1021/ol802361p

    Article  CAS  Google Scholar 

  136. Qiu X-L, Xu X-H, Qing F-L (2010) Recent advances in the synthesis of fluorinated nucleosides. Tetrahedron 4:789–843. https://doi.org/10.1016/j.tet.2009.11.001

    Article  CAS  Google Scholar 

  137. Xiao H, Huang Y, Qing F-L (2010) Highly diastereoselective synthesis of α-trifluoromethylated α-propargylamines by acetylide addition to chiral CF3-substituted N-tert-butanesulfinyl ketimines. Tetrahedron: Asymm 21:2949–2955.Doi: https://doi.org/10.1016/j.tetasy.2010.11.028

  138. Liu Y, Huang Y, Qing F-L (2012) Asymmetric synthesis of β-aryl-β-trifluoromethyl-β-aminoarones via Mannich-type reactions of ketone enolates with chiral aryl CF3-substituted N-tert-butanesulfinyl ketimines. Tetrahedron 68:4955–4961. https://doi.org/10.1016/j.tet.2012.04.070

    Article  CAS  Google Scholar 

  139. Liu Y, Liu J, Huang Y, Qing F-L (2013) Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines. Chem Commun 49:7492–7494. https://doi.org/10.1039/C3CC43741H

    Article  CAS  Google Scholar 

  140. Trulli L, Sciubba F, Fioravanti S (2018) Chiral trans-carboxylic trifluoromethyl 2-imidazolines by a Ag2O-catalyzed Mannich-type reaction. Tetrahedron 74:572–577. https://doi.org/10.1016/j.tet.2017.12.029

    Article  CAS  Google Scholar 

  141. Liu Y, Yang Y, Jiang Y (2016) Lewis acid-catalyzed asymmetric synthesis of complex chiral-fluorinated aminoesters via addition of acyclic silyl dienolates to α-fluoroalkyl sulfinylimines. Phosphorus Sulfur Relat Elem 191:988–992. https://doi.org/10.1080/10426507.2015.1119146

    Article  CAS  Google Scholar 

  142. Soloshonok VA, Avilov DV, Kukhar VP, Van Meervelt L, Mischenko N (1997) Highly diastereoselective aza-aldol reactions of a chiral Ni(II) complex of glycine with imines. An efficient asymmetric approach to 3-perfluoroalkyl-2, 3-diamino acids. Tetrahedron Lett 38:4671–4674. https://doi.org/10.1016/S0040-4039(97)00963-5

    Article  CAS  Google Scholar 

  143. Kawamura A, Moriwaki H, Roeschenthaler G-V, Kawada K, Aceña JL, Soloshonok VA (2015) Synthesis of (2S, 3S)-β-(trifluoromethyl)-α, β-diamino acid by Mannich addition of glycine Schiff base Ni(II) complexes to N-tert-butylsulfinyl-3, 3, 3-trifluoroacetaldimine. J Fluor Chem 171:67–72. https://doi.org/10.1016/j.jfluchem.2014.09.013

    Article  CAS  Google Scholar 

  144. Bravo P, Fustero S, Guidetti M, Volonterio A, Zanda M (1999) Stereoselective Mannich-type reaction of an acyclic ketimine with a substituted chlorotitanium enolate: efficient approach to d-erythro-α-trifluoromethylβ-hydroxyaspartic units. J Org Chem 64:8731–8735. https://doi.org/10.1021/jo9909397

    Article  CAS  Google Scholar 

  145. Lazzaro F, Crucianelli M, De Angelis F, Frigerio M, Malpezzi L, Volonterio A, Zanda M (2004) Stereoselective synthesis of (R)-and (S)-α-trifluoromethyl aspartic acid via titanium enolate addition to a sulfinimine of trifluoropyruvate. Tetrahedron Asymm 15:889–893. Doi: https://doi.org/10.1016/j.tetasy.2004.01.013

  146. Kang YK, Kim DY (2011) Catalytic asymmetric Mannich-type reactions of fluorinated ketoesters with N-Boc aldimines in the presence of chiral palladium complexes. Tetrahedron Lett 52:2356–2358. https://doi.org/10.1016/j.tetlet.2011.02.087

    Article  CAS  Google Scholar 

  147. Hu X-S, Du Y, Yu J-S, Liao F-M, Ding P-G, Zhou J (2017) A highly efficient gold (I)-catalyzed Mukaiyama-Mannich reaction of α-amino sulfones with fluorinated silyl enol ethers to give β-amino α-fluorinated ketones. Synlett 28:2194–2198. https://doi.org/10.1055/s-0036-1588475

    Article  CAS  Google Scholar 

  148. Parise L, Pelagalli A, Pellacani L, Sciubba F, Vergari MC, Fioravanti S (2016) Ethyl nitroacetate in aza-Henry addition on trifluoromethyl aldimines: a solvent-free procedure to obtain chiral trifluoromethyl α, β-diamino esters. J Org Chem 81:2864–2874. https://doi.org/10.1021/acs.joc.6b00136

    Article  CAS  PubMed  Google Scholar 

  149. Bravo P, Guidetti M, Viani F, Zanda M, Markovsky AL, Sorochinsky AE, Soloshonok IV, Soloshonok VA (1998) Chiral sulfoxide controlled asymmetric additions to C=N double bond. An efficient approach to stereochemically defined α-fluoroalkyl amino compounds. Tetrahedron 54:12789–12806. https://doi.org/10.1016/S0040-4020(98)00779-0

    Article  CAS  Google Scholar 

  150. Liu J, Zhang L, Hu J (2008) Stereoselective monofluoromethylation of N-tert-butylsulfinyl ketimines using pregenerated fluoro (phenylsulfonyl) methyl anion. Org Lett 10:5377–5380. https://doi.org/10.1021/ol802226k

    Article  CAS  PubMed  Google Scholar 

  151. Mei H, Xiong Y, Han J, Pan Y (2011) A facile process for the asymmetric synthesis of β-trifluoromethylated β-amino ketones via addition of ketone enolates to sulfinylimine. Org Biomol Chem 9:1402–1406. https://doi.org/10.1039/C0OB00586J

    Article  CAS  PubMed  Google Scholar 

  152. Turcheniuk KV, Poliashko KO, Kukhar VP, Rozhenko AB, Soloshonok VA, Sorochinsky AE (2012) Efficient asymmetric synthesis of trifluoromethylated β-aminophosphonates and their incorporation into dipeptides. Chem Commun 48:11519–11521. https://doi.org/10.1039/C2CC36702E

    Article  CAS  Google Scholar 

  153. Shevchuk MV, Kukhar VP, Röschenthaler G-V, Bassil BS, Kawada K, Soloshonok VA, Sorochinsky AE (2013) New asymmetric approach to β-trifluoromethyl isoserines. RSC Adv 3:6479–6484. https://doi.org/10.1039/C3RA40687C

    Article  CAS  Google Scholar 

  154. Mei H, Xie C, Wu L, Soloshonok VA, Han J, Pan Y (2013) Asymmetric Mannich reactions of imidazo [2, 1-b] thiazole-derived nucleophiles with (SS)-N-tert-butanesulfinyl (3, 3, 3)-trifluoroacetaldimine. Org Biomol Chem 11:8018–8021. https://doi.org/10.1039/C3OB41785A

    Article  CAS  PubMed  Google Scholar 

  155. Mei H, Xiong Y, Xie C, Soloshonok VA, Han J, Pan Y (2014) Concise and scalable asymmetric synthesis of 5-(1-amino-2, 2, 2-trifluoroethyl) thiazolo [3, 2-b][1, 2, 4] triazoles. Org Biomol Chem 12:2108–2113. https://doi.org/10.1039/C3OB42348D

    Article  CAS  PubMed  Google Scholar 

  156. Mei H, Dai Y, Wu L, Soloshonok VA, Han J, Pan Y (2014) Mannich-type addition reactions between lithium derivatives of benzo [d] thiazoles and N-tert-Butylsulfinyl-3, 3, 3-trifluoroacetaldimine: convenient generalized synthesis of bis (benzothiazole) s. Eur J Org Chem 2014:2429–2433. https://doi.org/10.1002/ejoc.201400118

    Article  CAS  Google Scholar 

  157. Xie C, Mei H, Wu L, Soloshonok VA, Han J, Pan Y (2014) LDA-promoted asymmetric synthesis of β-trifluoromethyl-β-amino indanone derivatives with virtually complete stereochemical outcome. RSC Adv 4:4763–4768. https://doi.org/10.1039/C3RA45773G

    Article  CAS  Google Scholar 

  158. Qian P, Xie C, Wu L, Mei H, Soloshonok VA, Han J, Pan Y (2014) Asymmetric synthesis of (3 S, 1′ S)-3-(1-amino-2, 2, 2-trifluoroethyl)-1-(alkyl)-indolin-2-one derivatives by addition of (S)-N-t-butylsulfinyl-3, 3, 3-trifluoroacetaldimine to 1-(alkyl)-indolin-2-ones. Org Biomol Chem 12:7909–7913. https://doi.org/10.1039/C4OB01453G

    Article  CAS  PubMed  Google Scholar 

  159. Wu L, Xie C, Zhou J, Mei H, Soloshonok VA, Han J, Pan Y (2015) General asymmetric synthesis of 2, 2, 2-trifluoro-1-(1H-indol-3-and-2-yl) ethanamines. J Fluor Chem 170:57–65. https://doi.org/10.1016/j.jfluchem.2015.01.001

    Article  CAS  Google Scholar 

  160. Chen X, Li Y, Zhao J, Zheng B, Lu Q, Ren X (2017) Stereoselective mannich reaction of N-(tert-Butylsulfinyl) imines with 3-fluorooxindoles and fluoroacetamides. Adv Synth Catal 359:3057–3062. https://doi.org/10.1002/adsc.201700353

    Article  CAS  Google Scholar 

  161. Ishikawa T, Kawasaki-Takasuka T, Kubota T, Yamazaki T (2017) Diastereoselective Mannich reactions of pseudo-C2-symmetric glutarimide with activated imines. Beilstein J Org Chem 13:2473–2477. https://doi.org/10.3762/bjoc.13.244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Han C, Kim EH, Colby DA (2011) Cleavage of carbon-carbon bonds through the mild release of trifluoroacetate: generation of α, α-difluoroenolates for aldol reactions. J Am Chem Soc 133:5802–5805. https://doi.org/10.1021/ja202213f

    Article  CAS  PubMed  Google Scholar 

  163. Zhang P, Wolf C (2013) Catalytic enantioselective difluoroalkylation of aldehydes. Angew Chem, Int Ed 52:7869–7873. https://doi.org/10.1002/anie.201303551

    Article  CAS  Google Scholar 

  164. Zhang P, Wolf C (2012) Synthesis of pentafluorinated β-hydroxy ketones. J Org Chem 77:8840–8844. https://doi.org/10.1021/jo3017583

    Article  CAS  PubMed  Google Scholar 

  165. Xie C, Wu L, Mei H, Soloshonok VA, Han J, Pan Y (2014) Generalized access to fluorinated β-keto amino compounds through asymmetric additions of α, α-difluoroenolates to CF3-sulfinylimine. Org Biomol Chem 12:7836–7843. https://doi.org/10.1039/C4OB01575D

    Article  CAS  PubMed  Google Scholar 

  166. Xie C, Dai Y, Mei H, Han J, Soloshonok VA, Pan Y (2015) Asymmetric synthesis of quaternary α-fluoro-β-keto-amines via detrifluoroacetylative Mannich reactions. Chem Commun 51:9149–9152. https://doi.org/10.1039/C5CC02256H

    Article  CAS  Google Scholar 

  167. Xie C, Sha W, Zhu Y, Han J, Soloshonok VA, Pan Y (2017) Asymmetric synthesis of C–F quaternary α-fluoro-β-amino-indolin-2-ones via Mannich addition reactions; facets of reactivity, structural generality and stereochemical outcome. RSC Adv 7:5679–5683. https://doi.org/10.1039/C6RA27710A

    Article  CAS  Google Scholar 

  168. Xie C, Zhang L, Sha W, Soloshonok VA, Han J, Pan Y (2016) Detrifluoroacetylative in situ generation of free 3-fluoroindolin-2-one-derived tertiary enolates: design, synthesis, and assessment of reactivity toward asymmetric Mannich reactions. Org Lett 18:3270–3273. https://doi.org/10.1021/acs.orglett.6b01516

    Article  CAS  PubMed  Google Scholar 

  169. Xie C, Zhang L, Mei H, Han J, Soloshonok VA, Pan Y (2016) Development and evaluation of different methods for preparation of fluorine-containing (R)-and (S)-N-tert-butanesulfinyl–aldimines. Chem Select 1:4435–4439. https://doi.org/10.1002/slct.201601197

    Article  CAS  Google Scholar 

  170. Dai Y, Xie C, Zhou J, Mei H, Soloshonok VA, Han J, Pan Y (2015) Generalized approach to asymmetric synthesis of β-substituted β-amino acids bearing CHF2, CBr F2, and CClF2 groups. Asian J Org Chem 4:1020–1024. https://doi.org/10.1002/ajoc.201500252

    Article  CAS  Google Scholar 

  171. Dai Y, Xie C, Mei H, Han J, Soloshonok VA, Pan Y (2015) Asymmetric synthesis of β-trifluoromethyl-β-amino acids, including highly sterically constrained α, α-dialkyl derivatives. Tetrahedron 71:9550–9556. https://doi.org/10.1016/j.tet.2015.10.071

    Article  CAS  Google Scholar 

  172. Zhang W, Sha W, Zhu Y, Han J, Soloshonok VA, Pan Y (2017) Asymmetric synthesis of quaternary β-perfluorophenyl-β-amino-indolin-2-ones. Eur J Org Chem 2017:1540–1546. https://doi.org/10.1002/ejoc.201601645

    Article  CAS  Google Scholar 

  173. Wu L, Xie C, Mei H, Dai Y, Han J, Soloshonok VA, Pan Y (2015) Synthesis of trifluoromethyl-containing vicinal diamines by asymmetric decarboxylative Mannich addition reactions. J Org Chem 80:3187–3194. https://doi.org/10.1021/acs.joc.5b00124

    Article  CAS  PubMed  Google Scholar 

  174. Shibata N, Nishimine T, Shibata N, Tokunaga E, Kawada K, Kagawa T, Sorochinsky AE, Soloshonok VA (2012) Organic base-catalyzed stereodivergent synthesis of (R)-and (S)-3-amino-4, 4, 4-trifluorobutanoic acids. Chem Commun 48:4124–4126. https://doi.org/10.1039/C2CC30627A

    Article  CAS  Google Scholar 

  175. Shibata N, Nishimine T, Shibata N, Tokunaga E, Kawada K, Kagawa T, Aceña JL, Sorochinsky AE, Soloshonok VA (2014) Asymmetric Mannich reaction between (S)-N-(tert-butanesulfinyl)-3, 3, 3-trifluoroacetaldimine and malonic acid derivatives. Stereodivergent synthesis of (R)-and (S)-3-amino-4, 4, 4-trifluorobutanoic acids. Org Biomo Chem 12:1454–1462. https://doi.org/10.1039/C3OB42425A

    Article  CAS  Google Scholar 

  176. Robak MT, Herbage MA, Ellman JA (2010) Synthesis and applications of tert-butanesulfinamide. Chem Rev 110:3600–3740. https://doi.org/10.1021/cr900382t

    Article  CAS  PubMed  Google Scholar 

  177. Shang H, Li Y, Li X, Ren X (2015) Diastereoselective addition of metal α-fluoroenolates of carboxylate esters to n-tert-butylsulfinyl imines: synthesis of α-fluoro-β-amino acids. J Org Chem 80:8739–8747. https://doi.org/10.1021/acs.joc.5b01574

    Article  CAS  PubMed  Google Scholar 

  178. Li X, Li Y, Shang H (2016) A diastereoselective Mannich-type reaction of α-fluorinated carboxylate esters: synthesis of β-amino acids containing α-quaternary fluorinated carbon centers. Org Biomol Chem 14:6457–6462. https://doi.org/10.1039/C6OB01084A

    Article  CAS  PubMed  Google Scholar 

  179. Davis FA (2006) Adventures in sulfur-nitrogen chemistry. J Org Chem 71:8993–9003. https://doi.org/10.1021/jo061027p

    Article  CAS  PubMed  Google Scholar 

  180. Zhou P, Chen B-C, Davis FA (2004) Recent advances in asymmetric reactions using sulfinimines (N-sulfinyl imines). Tetrahedron 37:8003–8030. https://doi.org/10.1016/j.tet.2004.06.071

    Article  CAS  Google Scholar 

  181. Morton D, Stockman RA (2006) Chiral non-racemic sulfinimines: versatile reagents for asymmetric synthesis. Tetrahedron 38:8869–8905. https://doi.org/10.1016/j.tet.2006.06.107

    Article  CAS  Google Scholar 

  182. Li Y, Li X, Shang H, Chen X, Ren X (2016) Diastereoselective Mannich reactions using fluorinated ketones: synthesis of stereogenic carbon-fluorine units. J Org Chem 81:9858–9866. https://doi.org/10.1021/acs.joc.6b01979

    Article  CAS  PubMed  Google Scholar 

  183. Zhang W, Wang X, Zhu B, Zhu D, Han J, Wzorek A, Sato A, Soloshonok VA, Zhou J, Pan Y (2017) Diastereoselective regiodivergent Mannich versus tandem Mannich-cyclization reactions. Adv Synth Catal 359(24):4267–4273. https://doi.org/10.1002/adsc.201701066

    Article  CAS  Google Scholar 

  184. Hu M, Wang F, Zhao Y, He Z, Zhang W, Hu J (2012) Difluoro (phenylchalcogen) methylation of aldehydes, ketones, and imines with S-, Se-, and Te-containing reagents PhXCF2H (X=S, Se, Te). J Fluor Chem 135:45–58. https://doi.org/10.1016/j.jfluchem.2011.08.007

    Article  CAS  Google Scholar 

  185. Zhang F, Liu Z-J, Liu J-T (2011) Asymmetric aza-Henry reaction of chiral fluoroalkyl α, β-unsaturated n-tert-butanesulfinyl ketoimines: an efficient approach to enantiopure fluoroalkylated α, β-diamines and α, β-diamino acids. Org Biomol Chem 9:3625–3628. https://doi.org/10.1039/C1OB05132F

    Article  CAS  PubMed  Google Scholar 

  186. Zhao QY, Yuan ZL, Shi M (2011) Highly diastereo-and enantioselective vinylogous mannich reactions of fluorinated aldimines with siloxyfurans. Adv Synth Catal 353:637–643. https://doi.org/10.1002/adsc.201000843

    Article  CAS  Google Scholar 

  187. Xie C, Wu L, Mei H, Soloshonok VA, Han J, Pan Y (2014) Operationally convenient method for preparation of sulfonamides containing α, α-difluoro-β-amino carbonyl moiety. Tetrahedron Lett 55:5908–5910. https://doi.org/10.1016/j.tetlet.2014.09.001

    Article  CAS  Google Scholar 

  188. Liu Y, Yang Y, Huang Y, Xu X-H, Qing F-L (2015) Regio-and diastereoselective vinylogous mannich addition of 3-alkenyl-2-oxindoles to α-fluoroalkyl aldimines. Synlett 26:67–72. https://doi.org/10.1055/s-0034-1379600

    Article  CAS  Google Scholar 

  189. Zhao J-b, Ren X, Zheng B-q, Ji J, Qiu Z-b, Li Y (2018) A diastereoselective Mannich reaction of α-fluoroketones with ketimines: Construction of β-fluoroamine motifs with vicinal tetrasubstituted stereocenters. Tetrahedron Lett 59:2091–2094. https://doi.org/10.1016/j.tetlet.2018.04.051

    Article  CAS  Google Scholar 

  190. Sanz-Vidal Á, Torres J, Soloshonok VA, Zhu Y, Han J, Fustero S, del Pozo C (2018) Asymmetric vinylogous mannich-type addition of α, α-dicyanoalkenes to α-fluoroalkyl sulfinyl imines. Adv Synth Catal 360:366–373. https://doi.org/10.1002/adsc.201701284

    Article  CAS  Google Scholar 

  191. Xie C, Mei H, Wu L, Soloshonok VA, Han J, Pan Y (2014) Concise asymmetric synthesis of β-trifluoromethylated α, β-diamino esters through addition reactions of glycine esters to cf3-sulfinylimine. Eur J Org Chem 2014:1445–1451. https://doi.org/10.1002/ejoc.201301377

    Article  CAS  Google Scholar 

  192. Zhang W, Sha W, Pajkert R, Mei H, Pan Y, Han J, Röschenthaler GV, Soloshonok VA (2017) β-amino-γ, γ-difluoro-ω-phosphonoglutamic acid derivatives: an unexplored, multifaceted structural type of tailor-made α-amino acids. Eur J Org Chem 2017:3451–3456. https://doi.org/10.1002/ejoc.201700570

    Article  CAS  Google Scholar 

  193. Zeng X-L, Deng Z-Y, Liu C, Zhao G, Lin J-H, Zheng X, Xiao J-C (2017) Nucleophilic monofluoroalkylation with fluorinated phosphonium salt toward carbonyl and imine compounds. J Fluor Chem 193:17–23. https://doi.org/10.1016/j.jfluchem.2016.11.012

    Article  CAS  Google Scholar 

  194. Wang W, Fang X, Yang X, Wu F (2020) Construction of N-Boc monofluoromethyl aryl sulfones via Mannich reaction of α-amido sulfones with trifluoromethyl α-fluorinated arylsulfonyl gem-diols. J Fluor Chem 235:109537. https://doi.org/10.1016/j.jfluchem.2020.109537

    Article  CAS  Google Scholar 

  195. Brak K, Jacobsen EN (2013) Asymmetric Ion-Pairing Catalysis. Angew Chem Int Ed 52:534–561. https://doi.org/10.1002/anie.201205449

    Article  CAS  Google Scholar 

  196. Vaithiyanathan V, Kim MJ, Liu Y, Yan H, Song CE (2017) Direct access to chiral β-fluoroamines with quaternary stereogenic center through cooperative cation-binding catalysis. Chem Eur J 23:1268–1272. https://doi.org/10.1002/chem.201605637

    Article  CAS  PubMed  Google Scholar 

  197. Paladhi S, Park SY, Yang JW, Song CE (2017) Asymmetric synthesis of α-fluoro-β-amino-oxindoles with tetrasubstituted c–f stereogenic centers via cooperative cation-binding catalysis. Org Lett 19:5336–5339. https://doi.org/10.1021/acs.orglett.7b02628

    Article  CAS  PubMed  Google Scholar 

  198. Huguenot F, Brigaud T (2006) Convenient asymmetric synthesis of β-trifluoromethyl-β-amino acid, β-amino ketones, and γ-amino alcohols via reformatsky and mannich-type reactions from 2-trifluoromethyl-1, 3-oxazolidines. J Org Chem 71:2159–2162. https://doi.org/10.1021/jo052323p

    Article  CAS  PubMed  Google Scholar 

  199. Mazzeo G, Longhi G, Abbate S, Mangiavacchi F, Santi C, Han J, Soloshonok VA, Melensi L, Ruzziconi R (2018) Mannich-type addition of 1, 3-dicarbonyl compounds to chiral tert-butanesulfinyltrifluoroacetaldimines. Mechanistic aspects and chiroptical studies. Org Biomol Chem 16:8742–8750. https://doi.org/10.1039/C8OB02204F

    Article  CAS  PubMed  Google Scholar 

  200. Fustero S, Rodenes M, Román R, Sedgwick DM, Aguado JE, Soloshonok VA, Han J, Mei H, Medio-Simon M, Barrio P (2019) Asymmetric vinylogous mukaiyama-mannich reactions of heterocyclic siloxy dienes with ellman’s fluorinated aldimines. Adv Synth Catal 361:3860–3867. https://doi.org/10.1002/adsc.201900464

    Article  CAS  Google Scholar 

  201. Gouverneur V, Seppelt K (2015) Introduction: fluorine chemistry. Chem Rev 115(2):563–565

    Article  CAS  Google Scholar 

  202. Isanbor C, O’Hagan D (2006) Fluorine in medicinal chemistry: a review of anti-cancer agents. J Fluor Chem 127(3):303–319. https://doi.org/10.1016/j.jfluchem.2006.01.011

    Article  CAS  Google Scholar 

  203. Fayed EA, Eissa SI, Bayoumi AH, Gohar NA, Mehany ABM, Ammar YA (2019) Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents. Mol Divers 23(1):165–181. https://doi.org/10.1007/s11030-018-9865-9

    Article  CAS  PubMed  Google Scholar 

  204. Wang B-C, Wang L-J, Jiang B, Wang S-Y, Wu N, Li X-Q, Shi D-Y (2017) Application of fluorine in drug design during 2010–2015 years: a mini-review. Mini Rev Med Chem 17(8):683–692. https://doi.org/10.2174/1389557515666151016124957

    Article  CAS  PubMed  Google Scholar 

  205. Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B (2019) Approaches to obtaining fluorinated α-amino acids. Chem Rev 119(18):10718–10801. https://doi.org/10.1021/acs.chemrev.9b00024

    Article  CAS  PubMed  Google Scholar 

  206. Mei H, Han J, Fustero S, Medio-Simon M, Sedgwick DM, Santi C, Ruzziconi R, Soloshonok VA (2019) Fluorine-containing drugs approved by the FDA in 2018. Chem Eur J 25(51):11797–11819. https://doi.org/10.1002/chem.201901840

    Article  CAS  PubMed  Google Scholar 

  207. Inoue M, Sumii Y, Shibata N (2020) Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 5(19):10633–10640. https://doi.org/10.1021/acsomega.0c00830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yadav P, Lal K, Kumar L, Kumar A, Kumar A, Paul AK, Kumar R (2018) Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1, 2, 3-triazole conjugates. Eur J Med Chem 155:263–274. https://doi.org/10.1016/j.ejmech.2018.05.055

    Article  CAS  PubMed  Google Scholar 

  209. Carvalho MF, Oliveira RS (2017) Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Crit Rev Biotechnol 37(7):880–897. https://doi.org/10.1080/07388551.2016.1267109

    Article  CAS  PubMed  Google Scholar 

  210. Zhuang C, Wu Y, Zhang W, Miao Z (2020) Fluorine-containing drugs and drug candidates derived from natural products. Nat Prod Clin Trialss 2(2):123. https://doi.org/10.2174/97898114257691200201

    Article  Google Scholar 

  211. Caron S (2020) Where does the fluorine come from? A review on the challenges associated with the synthesis of organofluorine compounds. Org Process Res Dev 24(4):470–480. https://doi.org/10.1021/acs.oprd.0c00030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoo Dabiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabiri, M., Lehi, N.F. & Mohammadian, R. Catalytic stereoselective Mannich-type reactions for construction of fluorinated compounds. Mol Divers 26, 1267–1310 (2022). https://doi.org/10.1007/s11030-021-10235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10235-1

Keywords

Navigation