Skip to main content
Log in

Inhibitory effects of berberine on ovarian cancer: Beyond apoptosis

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Ovarian cancer is one of the main causes of women’s mortality worldwide. A variety of biological mechanisms are involved in ovarian cancer pathogenesis, including epigenetic alterations, mutations (especially in tumor suppressor genes), upregulated oncogenes, decreased apoptotic pathways, and dysregulation of other signaling pathways. Surgery and chemotherapy are two common approaches for treating ovarian cancer. Chemoresistance to common therapeutic drugs results in a lack of significant improvements in ovarian cancer therapy. In this regard, finding and developing new therapeutic platforms are required. Utilizing medicinal plants has emerged as a new horizon in the treatment of various cancers, such as ovarian cancer. Berberine is a yellow extract obtained from different plants and shows various antitumor activities. Also, clinical studies indicated that berberine is a safe and nontoxic compound. Herein, we reviewed the role of berberine in different aspects of ovarian cancers, such as apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

WHO:

World Health Organization

MC:

mucinous carcinomas

SC:

serous carcinomas

CCC:

clear-cell carcinomas

EC:

endometrioid carcinomas

NSCLC:

Non-small Cell Lung Cancer

CCNE1 :

encoding cycline E1

TNF-α:

tumor necrosis factor-α

MPO:

Myeloperoxidase

FSH:

follicle-stimulating hormone

TRAIL:

TNF-related apoptosis inducing ligand

IGF-1:

insulin-like growth factor-1

NAIP:

neuronal apoptosis inhibitory proteins

XIAP:

X-linked inhibitor of apoptosis protein

miRNA:

microRNA

3’UTRs:

3′ untranslated regions

TF:

tissue factor

ER:

estrogen receptor

AIF:

apoptosis-inducing factor

ER:

endoplasmic reticulum

PARP:

poly(ADP-ribose) polymerase

SASP:

senescence-associated secretory phenotype

SA-β-gal:

senescence-associated β-galactosidase

HRR:

homologous recombination repair

DHFR:

dihydrofolate reductase

TS:

thymidylate synthase

SSAT:

spermidine/spermine N1-acetyltransferase

hERG1:

human ether-a-go-go-related potassium channel 1

FasL:

Fas ligand

PKC:

protein kinase C

AMPK:

adenosine monophosphate-activated protein kinase

ERK:

extracellular signal-regulated kinases

IL:

interleukin

PI3K:

phosphatidylinositol 3 kinase

PTEN:

phosphatase and tensin homolog

iNOS:

inducible nitric oxide synthase

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Mirandola L, M JC, Cobos E, Bernardini G, Jenkins MR, Kast WM, et al. Cancer testis antigens: novel biomarkers and targetable proteins for ovarian cancer. Int Rev Immunol. 2011;30:127–37.

    Article  CAS  PubMed  Google Scholar 

  3. Rooth C. Ovarian cancer: risk factors, treatment and management. Br J Nurs. 2013;22:S23–30.

    Article  PubMed  Google Scholar 

  4. Wu Y, Zhang X, Lin L, Ma XP, Ma YC, Liu PS. Aberrant methylation of RASSF2A in tumors and plasma of patients with epithelial ovarian cancer. Asian Pac J Cancer Prev. 2014;15:1171–6.

    Article  PubMed  Google Scholar 

  5. House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol. 2014;4:26

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shabaninejad Z, Vafadar A, Movahedpour A, Ghasemi Y, Namdar A, Fathizadeh H, et al. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res. 2019;12:84

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kauff ND, Domchek SM, Friebel TM, Robson ME, Lee J, Garber JE, et al. Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol. 2008;26:1331–7.

    Article  PubMed  Google Scholar 

  8. Watson P, Vasen HFA, Mecklin JP, Bernstein I, Aarnio M, Jarvinen HJ, et al. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int J Cancer. 2008;123:444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet 2014;384:1376–88.

    Article  PubMed  Google Scholar 

  10. Tworoger SS, Fairfield KM, Colditz GA, Rosner BA, Hankinson SE. Association of oral contraceptive use, other contraceptive methods, and infertility with ovarian cancer risk. Am J Epidemiol. 2007;166:894–901.

    Article  PubMed  Google Scholar 

  11. Jamilian M, Farhat P, Foroozanfard F, Afshar Ebrahimi F, Aghadavod E, Bahmani F, et al. Comparison of myo-inositol and metformin on clinical, metabolic and genetic parameters in polycystic ovary syndrome: a randomized controlled clinical trial. Clin Endocrinol. 2017;87:194–200.

    Article  CAS  Google Scholar 

  12. Foroozanfard F, Talebi M, Samimi M, Mehrabi S, Badehnoosh B, Jamilian M, et al. Effect of two different doses of vitamin D supplementation on metabolic profiles of insulin-resistant patients with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Horm Metab Res. 2017;49:612–7.

    Article  CAS  PubMed  Google Scholar 

  13. Amirjani S, Asemi Z, Bazarganipour F, Aramesh S, Allan H, Sayadi M, et al. Dietary intake and lifestyle behaviour in different phenotypes of polycystic ovarian syndrome: a case-control study. J Hum Nutr Diet. 2019;32:413–21.

    Article  CAS  PubMed  Google Scholar 

  14. Hanson B, Johnstone E, Dorais J, Silver B, Peterson CM, Hotaling J. Female infertility, infertility-associated diagnoses, and comorbidities: a review. J Assist Reprod Genet. 2017;34:167–77.

    Article  PubMed  Google Scholar 

  15. Salehi F, Dunfield L, Phillips KP, Krewski D, Vanderhyden BC. Risk factors for ovarian cancer: an overview with emphasis on hormonal factors. J Toxicol Environ Health B Crit Rev. 2008;11:301–21.

    Article  CAS  Google Scholar 

  16. Kossai M, Leary A, Scoazec JY, Genestie C. Ovarian cancer: a heterogeneous disease. Pathobiology. 2018;85:41–9.

    Article  PubMed  Google Scholar 

  17. Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) gammadelta T cells: a potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett. 2016;380:413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mirzaei HR, Sahebkar A, Salehi R, Nahand JS, Karimi E, Jaafari MR, et al. Boron neutron capture therapy: moving toward targeted cancer therapy. J Cancer Res Ther. 2016;12:520–5.

    Article  CAS  PubMed  Google Scholar 

  19. Mirzaei H, Sahebkar A, Avan A, Jaafari MR, Salehi R, Salehi H, et al. Application of mesenchymal stem cells in melanoma: a potential therapeutic strategy for delivery of targeted agents. Curr Med Chem. 2016;23:455–63.

    Article  CAS  PubMed  Google Scholar 

  20. Mohammadi M, Jaafari MR, Mirzaei HR, Mirzaei H. Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Ther. 2016;23:285–6.

    Article  CAS  PubMed  Google Scholar 

  21. Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, Negahdari B, Sahebkar A, Masoudifar A, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. 2018;233:2902–10.

  22. Mirzaei H, Sahebkar A, Sichani LS, Moridikia A, Nazari S, Sadri Nahand J, et al. Therapeutic application of multipotent stem cells. J Cell Physiol. 2018;233:2815–23.

    Article  CAS  PubMed  Google Scholar 

  23. Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, et al. Mesenchymal stem cells: a new platform for targeting suicide genes in cancer. 2018;233:3831–45.

  24. Mirzaei H, Salehi H, Oskuee RK, Mohammadpour A, Mirzaei HR, Sharifi MR, et al. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett. 2018;419:30–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mirzaei H, Sahebkar A, Jaafari MR, Hadjati J, Javanmard SH, Mirzaei HR, et al. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Ther. 2016;23:45–7.

    Article  CAS  PubMed  Google Scholar 

  26. Gamarra-Luques CD, Hapon MB, Goyeneche AA, Telleria CM. Resistance to cisplatin and paclitaxel does not affect the sensitivity of human ovarian cancer cells to antiprogestin-induced cytotoxicity. J Ovarian Res. 2014;7:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Vaughan S, Coward JI, Bast RC Jr, Berchuck A, Berek JS, Brenton JD, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011;11:719–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crane TE, Khulpateea BR, Alberts DS, Basen-Engquist K, Thomson CA. Dietary intake and ovarian cancer risk: a systematic review. Cancer Epidemiol Biomark Prev. 2014;23:255–73.

    Article  CAS  Google Scholar 

  29. Zhang J, Lai Z, Huang W, Ling H, Lin M, Tang S, et al. Apicidin inhibited proliferation and invasion and induced apoptosis via mitochondrial pathway in non-small cell lung cancer GLC-82 cells. Anticancer Agents Med Chem. 2017;17:1374–82.

    CAS  PubMed  Google Scholar 

  30. Zhang JY, Yi T, Liu J, Zhao ZZ, Chen HB. Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. J Agric Food Chem. 2013;61:2188–95.

    Article  CAS  PubMed  Google Scholar 

  31. Meng M, Geng S, Du Z, Yao J, Zheng Y, Li Z, et al. Berberine and cinnamaldehyde together prevent lung carcinogenesis. Oncotarget. 2017;8:76385–97.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tao YW, Lin YC, She ZG, Lin MT, Chen PX, Zhang JY. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anticancer Agents Med Chem. 2015;15:258–66.

    Article  CAS  PubMed  Google Scholar 

  33. Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: a potential for cancer immunotherapy. Pharm Res. 2019;147:104353

    Article  CAS  Google Scholar 

  34. Ghasemi F, Shafiee M, Banikazemi Z, Pourhanifeh MH, Khanbabaei H, Shamshirian A, et al. Curcumin inhibits NF-kB and Wnt/beta-catenin pathways in cervical cancer cells. Pathol Res Pr. 2019;215:152556

    Article  CAS  Google Scholar 

  35. Kulkarni SK, Dhir A. Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res. 2010;24:317–24.

    Article  CAS  PubMed  Google Scholar 

  36. Ahmed T, Gilani AU, Abdollahi M, Daglia M, Nabavi SF, Nabavi SM. Berberine and neurodegeneration: a review of literature. Pharm Rep. 2015;67:970–9.

    Article  CAS  Google Scholar 

  37. Battu SK, Repka MA, Maddineni S, Chittiboyina AG, Avery MA, Majumdar S. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech. 2010;11:1466–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin Y, Khadka DB, Cho WJ. Pharmacological effects of berberine and its derivatives: a patent update. Expert Opin Ther Pat. 2016;26:229–43.

    Article  CAS  PubMed  Google Scholar 

  39. Chen G, Lu F, Xu L, Dong H, Yi P, Wang F, et al. The anti-diabetic effects and pharmacokinetic profiles of berberine in mice treated with Jiao-Tai-Wan and its compatibility. Phytomedicine. 2013;20:780–6.

    Article  CAS  PubMed  Google Scholar 

  40. Ye M, Fu S, Pi R, He F. Neuropharmacological and pharmacokinetic properties of berberine: a review of recent research. J Pharm Pharm. 2009;61:831–7.

    Article  CAS  Google Scholar 

  41. Diogo CV, Machado NG, Barbosa IA, Serafim TL, Burgeiro A, Oliveira PJ. Berberine as a promising safe anti-cancer agent - is there a role for mitochondria? Curr Drug Targets. 2011;12:850–9.

    Article  CAS  PubMed  Google Scholar 

  42. Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur J Pharm. 2014;740:584–95.

    Article  CAS  Google Scholar 

  43. Wang Y, Kheir MM, Chai Y, Hu J, Xing D, Lei F, et al. Comprehensive study in the inhibitory effect of berberine on gene transcription, including TATA box. PLoS ONE. 2011;6:e23495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan Z-Y, Lu X, Lei F, Chai Y-S, Wang Y-G, Jiang J-F, et al. TATA boxes in gene transcription and poly (A) tails in mRNA stability: new perspective on the effects of berberine. Sci Rep. 2015;5:18326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Čerňáková M, Košt'álová D, Kettmann V, Plodová M, Tóth J, Dřímal J. Potential antimutagenic activity of berberine, a constituent of Mahonia aquifolium. BMC Complemen Altern Med. 2002;2:2.

    Article  Google Scholar 

  46. Lui VW, Wong EY, Ho Y, Hong B, Wong SC, Tao Q, et al. STAT3 activation contributes directly to Epstein-Barr virus-mediated invasiveness of nasopharyngeal cancer cells in vitro. Int J Cancer. 2009;125:1884–93.

    Article  CAS  PubMed  Google Scholar 

  47. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9:361–71.

    Article  CAS  PubMed  Google Scholar 

  48. Nowak M, Glowacka E, Szpakowski M, Szyllo K, Malinowski A, Kulig A, et al. Proinflammatory and immunosuppressive serum, ascites and cyst fluid cytokines in patients with early and advanced ovarian cancer and benign ovarian tumors. Neuro Endocrinol Lett. 2010;31:375–83.

    CAS  PubMed  Google Scholar 

  49. Clendenen TV, Lundin E, Zeleniuch-Jacquotte A, Koenig KL, Berrino F, Lukanova A, et al. Circulating inflammation markers and risk of epithelial ovarian cancer. Cancer Epidemiol Biomark Prev. 2011;20:799–10.

    Article  CAS  Google Scholar 

  50. Landen CN Jr, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol. 2008;26:995–1005.

    Article  PubMed  CAS  Google Scholar 

  51. Maccio A, Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58:133–47.

    Article  CAS  PubMed  Google Scholar 

  52. Saed GM, Fletcher NM, Jiang ZL, Abu-Soud HM, Diamond MP. Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress. Reprod Sci. 2011;18:1253–61.

    Article  CAS  PubMed  Google Scholar 

  53. Senthil K, Aranganathan S, Nalini N. Evidence of oxidative stress in the circulation of ovarian cancer patients. Clin Chim Acta. 2004;339:27–32.

    Article  CAS  PubMed  Google Scholar 

  54. Malone JM, Saed GM, Diamond MP, Sokol RJ, Munkarah AR. The effects of the inhibition of inducible nitric oxide synthase on angiogenesis of epithelial ovarian cancer. Am J Obstet Gynecol. 2006;194:1110–6.

    Article  CAS  PubMed  Google Scholar 

  55. Castillo-Tong DC, Pils D, Heinze G, Braicu I, Sehouli J, Reinthaller A, et al. Association of myeloperoxidase with ovarian cancer. Tumour Biol. 2014;35:141–8.

    Article  CAS  PubMed  Google Scholar 

  56. Saed GM, Ali-Fehmi R, Jiang ZL, Fletcher NM, Diamond MP, Abu-Soud HM, et al. Myeloperoxidase serves as a redox switch that regulates apoptosis in epithelial ovarian cancer. Gynecol Oncol. 2010;116:276–81.

    Article  CAS  PubMed  Google Scholar 

  57. Fletcher NM, Jiang Z, Ali-Fehmi R, Levin NK, Belotte J, Tainsky MA, et al. Myeloperoxidase and free iron levels: potential biomarkers for early detection and prognosis of ovarian cancer. Cancer Biomark. 2011;10:267–75.

    Article  CAS  PubMed  Google Scholar 

  58. Hussein MR. Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update. 2005;11:162–77.

    Article  PubMed  CAS  Google Scholar 

  59. Murdoch WJ. Programmed cell death in preovulatory ovine follicles. Biol Reprod. 1995;53:8–12.

    Article  CAS  PubMed  Google Scholar 

  60. Tilly JL. Apoptosis and ovarian function. Rev Reprod. 1996;1:162–72.

    Article  CAS  PubMed  Google Scholar 

  61. Arroyo A, Kim B, Yeh J. Luteinizing hormone action in human oocyte maturation and quality: signaling pathways, regulation, and clinical impact. Reprod Sci. 2020;27:1223–52.

    Article  PubMed  CAS  Google Scholar 

  62. Kaipia A, Hsueh AJ. Regulation of ovarian follicle atresia. Annu Rev Physiol. 1997;59:349–63.

    Article  CAS  PubMed  Google Scholar 

  63. Matsumoto K, Nakayama T, Sakai H, Tanemura K, Osuga H, Sato E, et al. Neuronal apoptosis inhibitory protein (NAIP) may enhance the survival of granulosa cells thus indirectly affecting oocyte survival. Mol Reprod Dev. 1999;54:103–11.

    Article  CAS  PubMed  Google Scholar 

  64. Vaskivuo TE, Tapanainen JS. Apoptosis in the human ovary. Reprod Biomed Online. 2003;6:24–35.

    Article  PubMed  Google Scholar 

  65. Harms KL, Chen X. The functional domains in p53 family proteins exhibit both common and distinct properties. Cell Death Differ. 2006;13:890–7.

    Article  CAS  PubMed  Google Scholar 

  66. Pietsch EC, Sykes SM, McMahon SB, Murphy ME. The p53 family and programmed cell death. Oncogene. 2008;27:6507–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25:104–13.

    Article  CAS  PubMed  Google Scholar 

  68. Dai L, Pan Q, Peng Y, Huang S, Liu J, Chen T, et al. p53 plays a key role in the apoptosis of human ovarian cancer cells induced by adenovirus-mediated CRM197. Hum Gene Ther. 2018;29:916–26.

  69. Zhang Y, Cao L, Nguyen D, Lu H. TP53 mutations in epithelial ovarian cancer. Transl Cancer Res. 2016;5:650–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khani P, Nasri F, Khani Chamani F, Saeidi F, Sadri Nahand J, Tabibkhooei A, et al. Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J Neurochem. 2019;148:188–203.

  71. Mirzaei H. Stroke in women: risk factors and clinical Biomarkers. J Cell Biochem. 2017;118:4191–202.

    Article  CAS  PubMed  Google Scholar 

  72. Salarinia R, Sahebkar A, Peyvandi M, Reza Mirzaei H, Reza Jaafari M, Matbou Riahi M, et al. Epi-drugs and Epi-miRs: moving beyond current cancer therapies. Curr cancer drug targets. 2016;16:773–88.

    Article  CAS  PubMed  Google Scholar 

  73. Rashidi B, Hoseini Z, Sahebkar A, Mirzaei H. Anti‐atherosclerotic effects of vitamins D and E in suppression of atherogenesis. J Cell Physiol. 2017;232:2968–76.

    Article  CAS  PubMed  Google Scholar 

  74. Gholamin S, Mirzaei H, Razavi SM, Hassanian SM, Saadatpour L, Masoudifar A, et al. GD2‐targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma. J Cell Physiol. 2018;233:866–79.

    Article  CAS  PubMed  Google Scholar 

  75. Keshavarzi M, Sorayayi S, Jafar Rezaei M, Mohammadi M, Ghaderi A, Rostamzadeh A, et al. MicroRNAs‐based imaging techniques in cancer diagnosis and therapy. J Cell Biochem. 2017;118:4121–8.

    Article  CAS  PubMed  Google Scholar 

  76. Callander NS, Varki N, Rao LV. Immunohistochemical identification of tissue factor in solid tumors. Cancer 1992;70:1194–201.

    Article  CAS  PubMed  Google Scholar 

  77. Lin Q, Chen T, Lin Q, Lin G, Lin J, Chen G, et al. Serum miR-19a expression correlates with worse prognosis of patients with non-small cell lung cancer. J Surg Oncol. 2013;107:767–71.

    Article  CAS  PubMed  Google Scholar 

  78. Wu C, Cao Y, He Z, He J, Hu C, Duan H, et al. Serum levels of miR-19b and miR-146a as prognostic biomarkers for non-small cell lung cancer. Tohoku J Exp Med. 2014;232:85–95.

    Article  CAS  PubMed  Google Scholar 

  79. Han X, Guo B, Li Y, Zhu B. Tissue factor in tumor microenvironment: a systematic review. J Hematol Oncol.2014;7:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Chen QQ, Shi JM, Ding Z, Xia Q, Zheng TS, Ren YB, et al. Berberine induces apoptosis in non-small-cell lung cancer cells by upregulating miR-19a targeting tissue factor. Cancer Manag Res. 2019;11:9005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gnocchi D, Leoni S, Incerpi S, Bruscalupi G. 3, 5, 3′-triiodothyronine (T3) stimulates cell proliferation through the activation of the PI3K/Akt pathway and reactive oxygen species (ROS) production in chick embryo hepatocytes. Steroids 2012;77:589–95.

    Article  CAS  PubMed  Google Scholar 

  82. Lenaz G. Mitochondria and reactive oxygen species. Which role in physiology and pathology? In Scatena R, Bottoni P, Giardina B, editors. Advances in mitochondrial medicine. Dordrecht:Springer; 2012. p. 93–136.

  83. Kuo P-L, Chen C-Y, Hsu Y-L. Isoobtusilactone A induces cell cycle arrest and apoptosis through reactive oxygen species/apoptosis signal-regulating kinase 1 signaling pathway in human breast cancer cells. Cancer Res. 2007;67:7406–20.

    Article  CAS  PubMed  Google Scholar 

  84. Xie J, Xu Y, Huang X, Chen Y, Fu J, Xi M, et al. Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway. Tumour Biol. 2015;36:1279–88.

    Article  CAS  PubMed  Google Scholar 

  85. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochemical Sci. 2016;41:211–8.

    Article  CAS  Google Scholar 

  86. Tavares-Valente D, Baltazar F, Moreira R, Queiros O. Cancer cell bioenergetics and pH regulation influence breast cancer cell resistance to paclitaxel and doxorubicin. J Bioenerg Biomembr. 2013;45:467–75.

    Article  CAS  PubMed  Google Scholar 

  87. Liang K-W, Yin S-C, Ting C-T, Lin S-J, Hsueh C-M, Chen C-Y, et al. Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells. Eur J Pharm. 2008;590:343–54.

    Article  CAS  Google Scholar 

  88. Yang X, Yang B, Cai J, Zhang C, Zhang Q, Xu L, et al. Berberine enhances radiosensitivity of esophageal squamous cancer by targeting HIF-1α in vitro and in vivo. Cancer Biol Ther. 2013;14:1068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang Q, Zhang C, Yang X, Yang B, Wang J, Kang Y, et al. Berberine inhibits the expression of hypoxia induction factor-1alpha and increases the radiosensitivity of prostate cancer. Diagn Pathol. 2014;9:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pan Y, Zhang F, Zhao Y, Shao D, Zheng X, Chen Y, et al. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer. J Cancer. 2017;8:1679–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hou D, Xu G, Zhang C, Li B, Qin J, Hao X, et al. Berberine induces oxidative DNA damage and impairs homologous recombination repair in ovarian cancer cells to confer increased sensitivity to PARP inhibition. Cell Death Dis. 2017;8:e3070.

  92. Zhao Y, Cui L, Pan Y, Shao D, Zheng X, Zhang F, et al. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer. Cell Prolif. 2017;50:e12393.

  93. Liu S, Fang Y, Shen H, Xu W, Li H. Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis. Acta Biochim Biophys Sin. 2013;45:756–62.

    Article  CAS  PubMed  Google Scholar 

  94. Chen Q, Qin R, Fang Y, Li H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell Physiol Biochem. 2015;36:956–65.

    Article  CAS  PubMed  Google Scholar 

  95. Marverti G, Ligabue A, Lombardi P, Ferrari S, Monti MG, Frassineti C, et al. Modulation of the expression of folate cycle enzymes and polyamine metabolism by berberine in cisplatin-sensitive and -resistant human ovarian cancer cells. Int J Oncol. 2013;43:1269–80.

    Article  CAS  PubMed  Google Scholar 

  96. Zhi D, Zhou K, Yu D, Fan X, Zhang J, Li X, et al. hERG1 is involved in the pathophysiological process and inhibited by berberine in SKOV3 cells. Oncol Lett. 2019;17:5653–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun Y, Xun K, Wang Y, Chen X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs. 2009;20:757–69.

    Article  CAS  PubMed  Google Scholar 

  98. Jin P, Zhang C, Li N. Berberine exhibits antitumor effects in human ovarian cancer cells. Anticancer Agents Med Chem. 2015;15:511–6.

    Article  CAS  PubMed  Google Scholar 

  99. Park KS, Kim JB, Lee SJ, Bae J. Berberine-induced growth inhibition of epithelial ovarian carcinoma cell lines. J Obstet Gynaecol Res. 2012;38:535–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

J.H. contributed in the conception, design, and drafting of the manuscript. P.M.D., M.J., B.B., R.S., and Z.A. contributed in reviewing relevant literature. All authors approved the final version for submission. J.H. oversaw the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bita Badehnoosh or Jamal Hallajzadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki Dana, P., Jahanshahi, M., Badehnoosh, B. et al. Inhibitory effects of berberine on ovarian cancer: Beyond apoptosis. Med Chem Res 30, 1605–1613 (2021). https://doi.org/10.1007/s00044-021-02763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02763-0

Keywords

Navigation