Skip to main content

Advertisement

Log in

Hsa_circ_0069244 acts as the sponge of miR-346 to inhibit non-small cell lung cancer progression by regulating XPC expression

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) play a significant role in the progression of diverse malignancies. Here, we aimed to probe the function and mechanism of circ_0069244 in non-small cell lung cancer (NSCLC). In the present study, circ_0069244 was selected from the circRNA microarray datasets (GSE112214). Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to examine circ_0069244, miR-346 and XPC complex subunit, DNA damage recognition and repair factor (XPC) expression levels. Kaplan–Meier curve was employed to analyze the association between circ_0069244 expression and overall survival of NSCLC patients. Cell counting kit-8 (CCK-8) and 5-Bromo-2'-deoxyuridine (BrdU) experiments were utilized to examine the proliferation of NSCLC cells. Scratch healing and Transwell experiments were executed to examine the migration of NSCLC cells. Western blot was conducted to detect XPC expression at protein level in NSCLC cells. Bioinformatics analysis, dual-luciferase reporter gene and RNA immunoprecipitation (RIP) experiments predicted and validated the targeting relationships of circ_0069244 and miR-346, as well as miR-346 and 3'untranslated region (UTR) of XPC mRNA, respectively. We reported that circ_0069244 was remarkably down modulated in NSCLC and was linked to shorter survival and poor tumor histological grade in NSCLC patients. Functionally, circ_0069244 repressed NSCLC cell proliferation and migration. Furthermore, miR-346-5p was unveiled to be a downstream target of circ_0069244, and miR-346-5p specifically modulated XPC expression. Rescue experiments indicated that the inhibitory effect of circ_0069244 was abolished by co-expression of miR-346-5p mimics. Taken together, circ_0069244 restrained NSCLC progression by modulating the miR-346-5p/XPC axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Nasim F, Sabath BF, Eapen GA. Lung cancer. Med Clin North Am. 2019;103(3):463–73.

    Article  Google Scholar 

  2. Lee SS, Cheah YK. The Interplay between MicroRNAs and cellular components of tumour microenvironment (TME) on non-small-cell lung cancer (NSCLC) progression. J Immunol Res. 2019;2019:3046379.

    PubMed  PubMed Central  Google Scholar 

  3. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.

    Article  CAS  Google Scholar 

  4. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14(8):535–46.

    Article  CAS  Google Scholar 

  5. Verduci L, Strano S, Yarden Y, Blandino G. The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment. Mol Oncol. 2019;13(4):669–80.

    Article  Google Scholar 

  6. Wu J, Qi X, Liu L, Hu X, Liu J, Yang J, Yang J, Lu L, Zhang Z, Ma S, et al. Emerging epigenetic regulation of circular RNAs in human cancer. Mol Ther Nucleic Acids. 2019;16:589–96.

    Article  CAS  Google Scholar 

  7. Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL. CircRNA: a novel type of biomarker for cancer. Breast Cancer. 2018;25(1):1–7.

    Article  Google Scholar 

  8. Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, Andrews R, Zhong W, Zhang X, Song E, et al. Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis. 2019;10(2):55.

    Article  Google Scholar 

  9. Tang Q, Chen Z, Zhao L, Xu H. Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging. 2019;11(22):9982–99.

    Article  CAS  Google Scholar 

  10. Afonso-Grunz F, Müller S. Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci. 2015;72(16):3127–41.

    Article  CAS  Google Scholar 

  11. Zhang M, Shi H, Zhang C, Zhang SQ. MiRNA-621 inhibits the malignant progression of non-small cell lung cancer via targeting SIX4. Eur Rev Med Pharmacol Sci. 2019;23(11):4807–14.

    CAS  PubMed  Google Scholar 

  12. Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X, Liu L, Lin B, Su H, Zhao L, et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res. 2017;23(17):5311–9.

    Article  CAS  Google Scholar 

  13. Sun CC, Li SJ, Yuan ZP, Li DJ. MicroRNA-346 facilitates cell growth and metastasis, and suppresses cell apoptosis in human non-small cell lung cancer by regulation of XPC/ERK/Snail/E-cadherin pathway. Aging. 2016;8(10):2509–24.

    Article  CAS  Google Scholar 

  14. Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ, Feng ZB, Chen G. A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med. 2018;16(1):220.

    Article  CAS  Google Scholar 

  15. Chen D, Ma W, Ke Z, Xie F. CircRNA hsa_circ_100395 regulates miR-1228/TCF21 pathway to inhibit lung cancer progression. Cell Cycle. 2018;17(16):2080–90.

    Article  CAS  Google Scholar 

  16. Zhang G, Li S, Lu J, Ge Y, Wang Q, Ma G, Zhao Q, Wu D, Gong W, Du M, et al. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Mol Cancer. 2018. https://doi.org/10.1186/s12943-018-0829-6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patop IL, Kadener S. circRNAs in Cancer. Curr Opin Genet Dev. 2018;48:121–7.

    Article  CAS  Google Scholar 

  18. Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38(16):e100836.

    Article  Google Scholar 

  19. Hsiao KY, Sun HS, Tsai SJ. Circular RNA - New member of noncoding RNA with novel functions. Exp Biol Med (Maywood). 2017;242(11):1136–41.

    Article  CAS  Google Scholar 

  20. Ma X, Liu C, Gao C, Li J, Zhuang J, Liu L, Li H, Wang X, Zhang X, Dong S, et al. circRNA-associated ceRNA network construction reveals the circRNAs involved in the progression and prognosis of breast cancer. J Cell Physiol. 2020;235(4):3973–83.

    Article  CAS  Google Scholar 

  21. Li X, Yang B, Ren H, Xiao T, Zhang L, Li L, Li M, Wang X, Zhou H, Zhang W. Hsa_circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p. Cell Death Dis. 2019;10(12):953.

    Article  CAS  Google Scholar 

  22. Chen T, Yang Z, Liu C, Wang L, Yang J, Chen L, Li W. Circ_0078767 suppresses non-small-cell lung cancer by protecting RASSF1A expression via sponging miR-330–3p. Cell Prolif. 2019;52(2):e12548.

    Article  Google Scholar 

  23. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.

    Article  Google Scholar 

  24. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–7.

    Article  CAS  Google Scholar 

  25. Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 2016;98:12–23.

    Article  Google Scholar 

  26. Del Vescovo V, Denti MA. microRNA and lung cancer. Adv Exp Med Biol. 2015;889:153–77.

    Article  Google Scholar 

  27. Li W, Wang Y, Zhang Q, Tang L, Liu X, Dai Y, Xiao L, Huang S, Chen L, Guo Z, et al. MicroRNA-486 as a biomarker for early diagnosis and recurrence of non-small cell lung cancer. PLoS ONE. 2015;10(8):e0134220.

    Article  Google Scholar 

  28. Xie WB, Liang LH, Wu KG, Wang LX, He X, Song C, Wang YQ, Li YH. MiR-140 expression regulates cell proliferation and targets PD-L1 in NSCLC. Cell Physiol Biochem. 2018;46(2):654–63.

    Article  CAS  Google Scholar 

  29. Chen Y, Min L, Zhang X, Hu S, Wang B, Liu W, Wang R, Gu X, Shen W, Lv H, et al. Decreased miRNA-148a is associated with lymph node metastasis and poor clinical outcomes and functions as a suppressor of tumor metastasis in non-small cell lung cancer. Oncol Rep. 2013;30(4):1832–40.

    Article  CAS  Google Scholar 

  30. Yan HL, Li L, Li SJ, Zhang HS, Xu W. miR-346-5p promotes migration and invasion of nasopharyngeal carcinoma cells via targeting BRMS1. J Biochem Mol Toxicol. 2016;30(12):602–7.

    Article  CAS  Google Scholar 

  31. Guo Z, Li J, Sun J, Sun L, Zhou Y, Yu Z. miR-346-5p promotes HCC progression by suppressing breast cancer metastasis suppressor 1 expression. Oncol Res. 2018;26(7):1073–81.

    Article  Google Scholar 

  32. Dupuy A, Sarasin A. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease. Mutat Res. 2015;776:2–8.

    Article  CAS  Google Scholar 

  33. Yang J, Xu Z, Li J, Zhang R, Zhang G, Ji H, Song B, Chen Z. XPC epigenetic silence coupled with p53 alteration has a significant impact on bladder cancer outcome. J Urol. 2010;184(1):336–43.

    Article  CAS  Google Scholar 

  34. Teng X, Fan XF, Li Q, Liu S, Wu DY, Wang SY, Shi Y, Dong M. XPC inhibition rescues cisplatin resistance via the Akt/mTOR signaling pathway in A549/DDP lung adenocarcinoma cells. Oncol Rep. 2019;41(3):1875–82.

    CAS  PubMed  Google Scholar 

  35. Sears CR. DNA repair as an emerging target for COPD-lung cancer overlap. Respir Investig. 2019;57(2):111–21.

    Article  Google Scholar 

  36. Zhang R, Jia M, Xue H, Xu Y, Wang M, Zhu M, Sun M, Chang J, Wei Q. Genetic variants in ERCC1 and XPC predict survival outcome of non-small cell lung cancer patients treated with platinum-based therapy. Sci Rep. 2017;7(1):10702.

    Article  Google Scholar 

  37. Cui T, Srivastava AK, Han C, Yang L, Zhao R, Zou N, Qu M, Duan W, Zhang X, Wang QE. XPC inhibits NSCLC cell proliferation and migration by enhancing E-Cadherin expression. Oncotarget. 2015;6(12):10060–72.

    Article  Google Scholar 

  38. Wu YH, Cheng YW, Chang JT, Wu TC, Chen CY, Lee H. Reduced XPC messenger RNA level may predict a poor outcome of patients with non-small cell lung cancer. Cancer. 2007;110(1):215–23.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the technical support provided by Hubei Yican Health Industry Co., Ltd.

Funding

This study is supported by the Youth Research Funding of the First Affiliated Hospital of Zhengzhou University.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: JS, HW, WF, JJ, Performed the experiments: JS, WF, SH, JA, LW, JJ. Analyzed the data: JS, JA, LW, JJ. Wrote the paper: JS, JJ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junguang Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Our study was approved by the Ethics Review Board of the First Affiliated Hospital of Zhengzhou University (approval number: 201900012).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wang, H., Feng, W. et al. Hsa_circ_0069244 acts as the sponge of miR-346 to inhibit non-small cell lung cancer progression by regulating XPC expression. Human Cell 34, 1490–1503 (2021). https://doi.org/10.1007/s13577-021-00573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00573-5

Keywords

Navigation